A Predicate Transformer
for Choreographies [Esor22]

Sung-Shik Jongmans®? and Petra van den Bos®

1 Open University of the Netherlands
2 Centrum Wiskunde & Informatica (CWI)
3 University of Twente

Long-term research aim:

Develop theoretical foundations
and practical tools to make
concurrent programming easier

Long-term research aim:

Develop theoretical foundations
and practical tools to make
concurrent programming easier

This paper:

1.
Communication via
message passing
(channel-based)

Long-term research aim:

Develop theoretical foundations
and practical tools to make
concurrent programming easier

This paper:

1.

Communication via 2.
message passing

X-by-construction
(channel-based)

Long-term research aim:

Develop theoretical foundations
and practical tools to make
concurrent programming easier

This paper:

1.

Communication via 2. 3.
message passin . functional
gep & X-by-construction xef
(channel-based) correctness (pre/post),
deadlock freedom }

Suppose that a program consists of:

1. 777 2,777 3. 777

Suppose that a program consists of:

1. processes 2. 777 3. 777

Suppose that a program consists of:

1. processes 2. channels 3. 777

Suppose that a program consists of:

1. processes 2. channels 3. “local programs”

send
to Bob

—
CA?x; AB! (x *6)
N

receive
from Carol

Suppose that a program consists of:

1. processes 2. channels 3. “local programs”

send
to Bob

—
CA?x; AB! (x *6)
N

receive
from Carol

Alice
7, AB?y;
& $ if v 14—
ifyl14==
.(——%.ob BC!"foo"

Suppose that a program consists of:

1. processes 2. channels 3. “local programs”

send
to Bob

—_—
CA?x ; AB! (x%6)

\.\,_-/
receive
from Carol
Alice
S AB?y
& . ?
% if yY14==
BC [J In "
CA!18:BC?z .(——/Bob BCl"too

Suppose that a program consists of:

1. processes 2. channels 3. “local programs”

send
to Bob

—_—
CA?x ; AB! (x%6)

\.\,_-/
receive
from Carol
Alice
S AB?y
® . ?
% if yY14==
BC [J I'n "
CA!18;:BC?z .<—/|30b BC!"too

How to prove that the program is
functionally correct and deadlock-free?

Not so €aSy... (even if we ignore functional correctness)

send
to Bob

—_—
CA7x; AB! (x ¥ 6)

—~
receive
from Carol
Alice
S AB?y
& . ?
% if yY14==
BC [] | n n
CA!18;:BC?z .(——/Bob BCl"f0o
Carol
Alice Bob Carol

T . T
1 1
1 1
1 1
1 1
1 1
1 1
1 1

(intuitively: global analysis)

send
to Bob

—_—
o2 ; AB! (x % 6)
——

receive
from Carol
Alice
S AB?y
® . ?
% if yY14==
BC [J n "
S48 BCYz o«— Bob BCl"f0o
Carol
Alice Bob Carol
| <3

1
1
1
1
1
1

(intuitively: global analysis)

send

o | AEeetY
\.\,_-/
receive
from Carol
Alice
T ABRy .
& ify%14==
BC °
S48 BCYz o«— Bob BCI"foor
Carol
Alice Bob Carol
| <3 1
1 1
: 108 :

(intuitively: global analysis)

send

to Bob
T
i | ARt
A
receive
from Carol
Alice
<
&
(JV'

BC (]
® (—-/Bob
Carol

Alice Bob Carol
| <+]
1 1
! 108 !

1
G XXX

(intuitively: global analysis)

send
to Bob

—_—
=
——

receive
from Carol

Alice

&,

_ BC °
A6 ° fe——— Bob
Carol

Alice Bob Carol
<3 .
1 1
! 108 !

1 1
i G XXX

(intuitively: global analysis)
[—

tedious, error-prone, ...

send
to Bob

—_—
=
——

receive
from Carol

Carol

How to prove that the program is
functionally correct and deadlock-free?

send
to Bob

—_—
=
——

receive
from Carol

Carol

How to prove that the program is
functionally correct and deadlock-free?

This paper: Choreographic programming

Choreographic programming in a nutshell:

1. 777

2. 717

[Carbone et al., ESOP'07/TOPLAS; Carbone & Montesi, POPL'13]

Choreographic programming in a nutshell:

1. Write global program G (manually)

2. 77

[Carbone et al., ESOP'07/TOPLAS; Carbone & Montesi, POPL'13]

Choreographic programming in a nutshell:

1. Write global program G (manually)

Fheorem: G is deadlock-freij

2. 717

[Carbone et al., ESOP'07/TOPLAS; Carbone & Montesi, POPL'13]

1. Write global program

G =C18—Ax;
A.(x*x6) -B.y;
if B.(y%14==0)

B."foo" —+C.z

1. Write global program

G =C18—Ax;
A.(x*x6) -B.y;
if B.(y%14==0)

B."foo" —+C.z

Choreographic programming in a nutshell:

1. Write global program G (manually)

Fheorem: G is deadlock-freij

2. Decompose into local programs L1, ..., L, (automatically)

[Carbone et al., ESOP'07/TOPLAS; Carbone & Montesi, POPL'13]

Choreographic programming in a nutshell:

1. Write global program G (manually)

Fheorem: G is deadlock-freij

2. Decompose into local programs L1, ..., L, (automatically)

Theorem
G~ | Ly,

[Carbone et al., ESOP'07/TOPLAS; Carbone & Montesi, POPL'13]

Choreographic programming in a nutshell:

1. Write global program G (manually)

Fheorem: G is deadlock-freij

2. Decompose into local programs L1, ..., L, (automatically)

Theorem Corollary:
G~ - |Ly, Lq|---|L, is deadlock-free

[Carbone et al., ESOP'07/TOPLAS; Carbone & Montesi, POPL'13]

1. Write global program

G =C18—Ax;
A.(x*x6) -B.y;
if B.(y%14==0)

B."foo" —+C.z

2. Decompose into local programs
La =777
Lg =777
Le =777

1. Write global program

G =C18—Ax;
A.(x*x6) -B.y;
if B.(y%14==0)

B."foo" —+C.z

2. Decompose into local programs

Lpn = CA?x ; ABl (x % 6)
Lg =777
Lc =777

1. Write global program

G =C18—Ax;
A.(x*6) —+B.y;
if B.(y%14==0)

B."foo" —+C.z

2. Decompose into local programs

Lp = CA?X;AB.’(X*G)

Lg = AB?y : if (y%h14==0) (BC!"foom)
Lc =777

1. Write global program

G =C18—+Ax;
A.(x*x6) —=B.y;
if B.(y%14==0)

B."foo" —+C.z

2. Decompose into local programs

Lp = CA?X;AB.’(X*G)

Lg = AB?y : if (y%h14==0) (BC!"foom)
Lc = undefined

1. Write global program

G =C18—Ax;
A.(x*x6) »-B.y;
P NOPPEN

B."foo"—+C.z

2. Decompose into local programs

Lp = CA?x;AB.’(x*G)

LB = AB?Y’MBC’"I'OO"§
L¢ = mrelebined CAl13 : BC?7z

Question: Can we construct a functionally-correct and
deadlock-free program for, e.g., leader election?

Answer: 777

Question: Can we construct a functionally-correct and
deadlock-free program for, e.g., leader election?

Answer: No

Question: Can we construct a functionally-correct and
deadlock-free program for, e.g., leader election?

Answer: No

Question: Why not?

Answer: 777

Question: Can we construct a functionally-correct and
deadlock-free program for, e.g., leader election?

Answer: No

Question: Why not?

Answer: (1) No theory of functional correctness; (2) No
theory of deadlock freedom of “multiparty conditions”

Question: Can we construct a functionally-correct and
deadlock-free program for, e.g., leader election?

Answer: Ne Yes Contributions
— What?

(1) Functional
correctness

Question: Why=aetl (2) Deadlock fr. +

multiparty conditions

Question: Can we construct a functionally-correct and
deadlock-free program for, e.g., leader election?

. C ibuti

Answer: ¥e Yes ontributions Contributions
— What?

) _ — How?
(1) Functional A predicate

correctness

— transformer for

Question: ¥hy=met2 (%) Deadlock fr. + global programs

multiparty conditions

Functional correctness: If the precondition is true
before executing, then the postcondition is true after

Deadlock freedom: Always, reduce or terminate

Functional correctness: If the precondition is true
before executing, then the postcondition is true after

Deadlock freedom: Always, reduce or terminate
- One—party condition: (centralised; existing)

if p.e (p.true—q.x1; ... ;p.true—q,. 7y ; Gire)

(p.false—bql.xl ;... ;p.false—>qy.xy Gfalse)

Functional correctness: If the precondition is true
before executing, then the postcondition is true after

Deadlock freedom: Always, reduce or terminate

Needed:
One-to-all
communications

- One—party condition: (centralised; existing)

. “easy” to check
if p.e (ptrue—sq .oy ; ... ;ptrue—s (O o

(p.false—bql.xl ;... ;p.false—>qy.xy Gfalse)

Functional correctness: If the precondition is true
before executing, then the postcondition is true after

Deadlock freedom: Always, reduce or terminate

Needed:
One-to-all
communications

- One—party condition: (centralised; existing)

. “easy” to check
if p.e (ptrue—sq .oy ; ... ;ptrue—s (O e

(p.false—bql.xl ;... ;p.false—>qy.xy Gfalse)

= Multiparty condition: (decentralised; new)

if (7’1.61 JARERIAY rn-en) Gtrue Gfalse

Functional correctness: If the precondition is true
before executing, then the postcondition is true after

Deadlock freedom: Always, reduce or terminate

Needed:
One-to-all
communications

- One—party condition: (centralised; existing)

. “easy” to check
if p.e (ptrue—sq .oy ; ... ;ptrue—s (O e

(p.false—bql.xl ;... ;p.false—>qy.xy Gfalse)

= Multiparty condition: (decentralised; new) Needed:

Unanimity among all
(“hard” to check)

if (7’1.61 A A ’l"n.en) Gtrue

Needed:

Unanimity among all
(“hard” to check)

G=Ax—+Bx;
By—Ay;

if (A.(x==y) AB.(x!=y))
B."foo" —+A.z
A."bar" —+B.z

Needed:
Unanimity among all
(“hard” to check)

predicate transformer

This paper: “Kill two birds with one stone”
—_——
functional correctness
and deadlock freedom
+ multiparty conditions

predicate transformer

This paper: “Kill two birds with one stone”
—_————

functional correctness
and deadlock freedom
+ multiparty conditions

In three bullets:

- Idea goes back to Dijkstra in the 1970s (weakest preconditions)

predicate transformer

This paper: “Kill two birds with one stone”
—_————

functional correctness
and deadlock freedom
+ multiparty conditions

In three bullets:
- Idea goes back to Dijkstra in the 1970s (weakest preconditions)

- If G and x are a global program and a postconditition,
then ¢(G, x) is a corresponding precondition

predicate transformer
This paper: “Kill two birds with one stone”
—_——
functional correctness

and deadlock freedom
+ multiparty conditions

In three bullets:
- Idea goes back to Dijkstra in the 1970s (weakest preconditions)

- If G and x are a global program and a postconditition,
then ¢(G, x) is a corresponding precondition

-E.g.:

predicate transformer
This paper: “Kill two birds with one stone”
—_——
functional correctness

and deadlock freedom
+ multiparty conditions

In three bullets:
- Idea goes back to Dijkstra in the 1970s (weakest preconditions)

- If G and x are a global program and a postconditition,
then ¢(G, x) is a corresponding precondition

-E.g: C.18—+Ax;A.(x*x6) »-B.y

predicate transformer
This paper: “Kill two birds with one stone”
—_——
functional correctness

and deadlock freedom
+ multiparty conditions

In three bullets:
- Idea goes back to Dijkstra in the 1970s (weakest preconditions)

- If G and x are a global program and a postconditition,
then ¢(G, x) is a corresponding precondition

-E.g: C.18—+Ax;A.(x*x6) »B.y By%1d==

predicate transformer
This paper: “Kill two birds with one stone”
—_——
functional correctness

and deadlock freedom
+ multiparty conditions

In three bullets:
- Idea goes back to Dijkstra in the 1970s (weakest preconditions)

- If G and x are a global program and a postconditition,
then ¢(G, x) is a corresponding precondition

-Eg: ¢(C18—+Ax;A.(x*x6) »By ,By%14==0)= L

predicate transformer
This paper: “Kill two birds with one stone”
—_——
functional correctness

and deadlock freedom
+ multiparty conditions

In three bullets:
- Idea goes back to Dijkstra in the 1970s (weakest preconditions)

- If G and x are a global program and a postconditition,
then ¢(G, x) is a corresponding precondition

-Eg: ¢(C18—+Ax;A (x*x6) »By ,By%12==0)=T

Suppose we have
syntax, semantics,

uwell-formedness’, .
and predicate Main reSUItSi]

transformer...

Suppose we have
syntax, semantics,

“well-formedness’, .
and predicate FMaln reSUItSi]

transformer...

Theorem: If G is well-formed and (G, x) = T, then G
is functionally correct and deadlock-free (+ multiparty conditions)

Suppose we have
syntax, semantics,

“well-formedness’, .
and predicate FMaln reSUItSi]

transformer...

Theorem: If G is well-formed and (G, x) = T, then G
is functionally correct and deadlock-free (+ multiparty conditions)

Theorem: If G is well-formed and ¢(G, x) = T, then
G~ Lyl |Ly,

Suppose we have
syntax, semantics,

“well-formedness’, .
and predicate FMaln reSUItSi]

transformer...

Theorem: If G is well-formed and (G, x) = T, then G
is functionally correct and deadlock-free (+ multiparty conditions)

Theorem: If G is well-formed and ¢(G, x) = T, then
G~ Lyl |Ly,

Corollary: If G is well-formed and (G, x) = T, then
Lq|---|L, is functionally correct and deadlock-free (+

multiparty conditions)

[che detaﬂs”;]

Syntax:
G = qy:=e
| pe—>qy
Gl) GQ

|

| Gl G
‘ if /\{67« reR Gl GQ

| while A{e,}rcr G

Fhe details..J

Syntax:
G = qy:=e L = qy:=e
| pe—qy | pgle
| G1;Go | pa?y
| G1] G2 | T
| if A{ev}rer G Ga | Ly ; L

| while A{e,}rcr G |-

The details..J

Syntax:
G = qy:=e L = qy:=e
| pe—qy | pgle
| G1;Gy I gy
| G1] G2 T
| if Ades}rer Gi Gy | L1 Lo
| |

while A{e.},cr G

[The details... |

Semantics:
— Abstract reductions: (symbolic)

ERINTC FRNG R PO} AN A 78

[The details... |

Semantics:
— Abstract reductions: (symbolic)
A
G2 a LESLD Ly L, 2L |L

— Concrete reductions: (explicit)

(G,8) > (G",8) (Ll |Ln,8) = (L4] -+ |17, ')

[The details... |

Semantics: .
Sequencmg is weak:
N . . Gl m ’y = @ G w,’}/ ’
— Abstract reductions: (symbolic) 2 7EY GGy

G1;G2 Y% .

/
2

G '(/17'7 G’ L L/ Ll | [Rensink & Wehrheim, CONCUR’94]

— Concrete reductions: (explicit)

(G,8) > (G",8) (Ll |Ln,8) = (L4] -+ |17, ')

[The detais...

Well-formedness:

- In Gy || G4, the channels that occur in G are disjoint
from those that occur in G,

-Inif A{e, },cr G1 G2 and while A{e,},cr G,

€Very process has a conjunct (multiparty conditions are “total”)

[The details.;]

Predicate transformer: (excerpt)

dlqy:=e,x) =xle/q.y]
d(pe—q.y,x) = xle/q.y]
d(G1;G2,x) = &(G1, (G2, X))
¢(G1 H Ga,x) =
&(G1, d(Ga, x)) if var(Gy) Nvar(Gy) =0

false otherwise

[The details.;]

Predicate transformer: (excerpt)

dlqy=e,x) = xle/qy

d(p-e—q.y,x) = xle/q.y] "
$(C1iCax) =¢(C1(E20) i e
&(G1 || Ga,x) =

O(G1, d(Ga, x)) if var(Gy) NvarGs) =V

false otherwise

[The details.;]

Predicate transformer: (excerpt)

G(f Alertrer G1Ga, x) =
(AL elrer = &(G1, X)) A
(AM—ertrer = (G2, X)) A
(Aer = ery}rimer)

[The details.;]

Predicate transformer: (excerpt)

G(f Alertrer G1Ga, x) =
(AL elrer = &(G1, X)) A
(A{=ertrer = &(G2, x)
(Aer = ery}rimer)

<— Essential for
deadlock freedom

[The details.;]

Predicate transformer: (excerpt)

¢d(while A{e.}rer G,x) =
@Z)inv A v(winv = (/\{ er}TER = (b(G: X)) A
(/\{_'er}reR = X) A

(/\{67'1 = €y }Tl,T2€R>)

[The details.;]

Predicate transformer: (excerpt)

¢d(while A{e.}rer G,x) =
@Z)inv A v(winv = (/\{ er}TER = (b(G: X)) A
(/\{_'er}reR = X) A

Essential for deadlock (/\{67'1 = €y }Tl,T2€R>)
freedom —

Suppose we have
syntax, semantics,

“well-formedness’, .
and predicate maln reSUIt‘S]

transformer...

Theorem: If G is well-formed and (G, x) = T, then G
is functionally correct and deadlock-free (+ multiparty conditions)

Theorem: If G is well-formed and ¢(G, x) = T, then
G~ Lyl |Ly,

Corollary: If G is well-formed and (G, x) = T, then
Lq|---|L, is functionally correct and deadlock-free (+

multiparty conditions)

Question: Can we construct a functionally-correct and
deadlock-free program for, e.g., leader election?

. C ibuti

Answer: ¥e Yes ontributions Contributions
— What?

) _ — How?
(1) Functional A predicate

correctness

=-— transformer for

Question: ¥#hy=net2 (%) Deadlock fr. + global programs

multiparty conditions

functionally-cor

leader election?

functionally-cor

leader election?

ate Transformer for Choreograph

. (Pl.[seed, id1,1d2, 143, 1eader]:=[-1,-1,-1 _1,false] ||
P2.[seed, id1,1d2, id3, leader] 1,-1,-1,-1,false| ||
P3.[seed, 1d1,1d2,1d3, leader -1,-1,-1,false]):
while \{r.!maxIsUnique(idl, 142,143) } e (19293}
(Pl.seed P1.id1:=randomi(seed) ; P1. id1-»[P3.1d1,P2 id1] H
P2.seed:=seed+1; P2.id random2(seed) p2.1d2—»[P1.1d2.P3. id2] ||
seed+1: P3- id3: 3.1d3 —[P2.1d3, P1. 1a3]) 5
:=true) (skip) ;
rue) (skip) 5
rue) (skip)

clique ne

Fi

of a distingui hu] process (to evaluate

making inherentl
ondition and s

» one-party

Question: Can we construct a functionally-correct and
deadlock-free program for, e.g., leader election?

. C ibuti

Answer: ¥e Yes ontributions Contributions
— What?

) _ — How?
(1) Functional A predicate

correctness

=-— transformer for

Question: ¥#hy=net2 (%) Deadlock fr. + global programs

multiparty conditions

Thank YOU (future work: asynchrony, and more)

	Appendix

