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Long-term research aim:

Develop theoretical foundations
and practical tools to make

concurrent programming easier

This paper:

1.
Communication via
message passing

(channel-based)

2.
X-by-construction

3.

X ∈{ functional
correctness (pre/post),

deadlock freedom }
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Alice

Bob
Carol

Suppose that a program consists of:

1. ???

processes

2. ???

channels

3. ???

“local programs”

CA?x
︸ ︷︷ ︸
receive

fromCarol

;

send
toBob︷ ︸︸ ︷

AB !(x * 6)

AB?y ;
if y % 14 == 0
BC !"foo"CA !18 ; BC?z



3/14

Alice

Bob
Carol

Suppose that a program consists of:

1. processes 2. ???

channels

3. ???

“local programs”

CA?x
︸ ︷︷ ︸
receive

fromCarol

;

send
toBob︷ ︸︸ ︷

AB !(x * 6)

AB?y ;
if y % 14 == 0
BC !"foo"CA !18 ; BC?z



3/14

Alice

Bob
Carol

Suppose that a program consists of:

1. processes 2. channels 3. ???

“local programs”

CA?x
︸ ︷︷ ︸
receive

fromCarol

;

send
toBob︷ ︸︸ ︷

AB !(x * 6)

AB?y ;
if y % 14 == 0
BC !"foo"CA !18 ; BC?z



3/14

CA

AB

BC

Alice

Bob
Carol

Suppose that a program consists of:

1. processes 2. channels 3. “local programs”

CA?x
︸ ︷︷ ︸
receive

fromCarol

;

send
toBob︷ ︸︸ ︷

AB !(x * 6)

AB?y ;
if y % 14 == 0
BC !"foo"CA !18 ; BC?z



3/14

CA

AB

BC

Alice

Bob
Carol

Suppose that a program consists of:

1. processes 2. channels 3. “local programs”

CA?x
︸ ︷︷ ︸
receive

fromCarol

;

send
toBob︷ ︸︸ ︷

AB !(x * 6)

AB?y ;
if y % 14 == 0
BC !"foo"CA !18 ; BC?z



3/14

CA

AB

BC

Alice

Bob
Carol

Suppose that a program consists of:

1. processes 2. channels 3. “local programs”

CA?x
︸ ︷︷ ︸
receive

fromCarol

;

send
toBob︷ ︸︸ ︷

AB !(x * 6)

AB?y ;
if y % 14 == 0
BC !"foo"

CA !18 ; BC?z



3/14

CA

AB

BC

Alice

Bob
Carol

Suppose that a program consists of:

1. processes 2. channels 3. “local programs”

CA?x
︸ ︷︷ ︸
receive

fromCarol

;

send
toBob︷ ︸︸ ︷

AB !(x * 6)

AB?y ;
if y % 14 == 0
BC !"foo"CA !18 ; BC?z



3/14

CA

AB

BC

Alice

Bob
Carol

How to prove that the program is
functionally correct and deadlock-free?

Not so easy... (even if we ignore functional correctness)
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(intuitively: global analysis︸ ︷︷ ︸
tedious, error-prone, ...

)
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This paper: Choreographic programming
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Choreographic programming in a nutshell:

1. ???

2. ???

Theorem:
G ≈ L1| · · · |Ln

Corollary:
L1| · · · |Ln is deadlock-free

[Carbone et al., ESOP’07/TOPLAS; Carbone & Montesi, POPL’13]

“top-down
X-by-construction”

instead of

“bottom-up analysis”

Alice Bob Carol
18

108

777

"foo"

1. Write global program

G = C.18_A.x ;
A.(x * 6)_B.y ;
if B.(y % 14 == 0)
B."foo"_C.z

2. Decompose into local programs
LA = ???

CA?x ; AB !(x * 6)

LB = ???

AB?y ; if (y % 14 == 0) (BC !"foo")

LC = ???

undefined
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Question: Can we construct a functionally-correct and
deadlock-free program for, e.g., leader election?

Answer: ???

Question: Why not?

Answer: ???

(1) No theory of functional correctness; (2) No
theory of deadlock freedom of “multiparty conditions”

Contributions
– What?

(1) Functional
correctness

(2) Deadlock fr. +
multiparty conditions

Contributions
– How?

A predicate
transformer for
global programs
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Functional correctness: If the precondition is true
before executing, then the postcondition is true after

Deadlock freedom: Always, reduce or terminate

One-party condition: (centralised; existing)

if p.e (p.true_q1.x1 ; . . . ; p.true_qn.xn ;Gtrue)

(p.false_q1.x1 ; . . . ; p.false_qn.xn ;Gfalse)

Multiparty condition: (decentralised; new)

if (r1.e1 ∧ · · · ∧ rn.en)Gtrue Gfalse

Needed:
One-to-all

communications
(“easy” to check)

Needed:
Unanimity among all

(“hard” to check)

G = A.x_B.x ;

B.y_A.y ;

if (A.(x == y) ∧ B.(x != y))

B."foo"_A.z

A."bar"_B.z
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This paper: “Kill two birds︸ ︷︷ ︸
functional correctness
and deadlock freedom
+ multiparty conditions

with

predicate transformer︷ ︸︸ ︷
one stone”

In three bullets:

Idea goes back to Dijkstra in the 1970s (weakest preconditions)

If G and χ are a global program and a postconditition,
then φ(G,χ) is a corresponding precondition

E.g.:

φ( C.18_A.x ; A.(x * 6)_B.y , B.y % 14 == 0 ) ≡ ⊥
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In three bullets:

Idea goes back to Dijkstra in the 1970s (weakest preconditions)

If G and χ are a global program and a postconditition,
then φ(G,χ) is a corresponding precondition

E.g.: φ( C.18_A.x ; A.(x * 6)_B.y , B.y % 12 == 0 ) ≡ >
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Main results

Theorem: If G is well-formed and φ(G,χ) ≡ >, then G
is functionally correct and deadlock-free (+ multiparty conditions)

Theorem: If G is well-formed and φ(G,χ) ≡ >, then
G ≈ L1| · · · |Ln

Corollary: If G is well-formed and φ(G,χ) ≡ >, then
L1| · · · |Ln is functionally correct and deadlock-free (+

multiparty conditions)

Suppose we have

syntax, semantics,

“well-formedness”,

and predicate
transformer...
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The details...

Syntax:

G ::= q.y :=e∣∣ p.e_q.y∣∣ G1 ;G2∣∣ G1 ‖G2∣∣ if ∧{er}r∈R G1 G2∣∣ while
∧{er}r∈R {ψinv}G

L ::= q.y :=e∣∣ pq !e∣∣ pq?y∣∣ τ∣∣ L1 ; L2∣∣ · · ·

“decomposes into”
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The details...

Semantics:

Abstract reductions: (symbolic)

G
ψ,γ−−→ G′ L

ψ,λ−−→ L′ L1| · · · |Ln ψ,γ−−→ L′
1| · · · |L′

n

Concrete reductions: (explicit)

(G,S) γ−→ (G′,S ′) (L1| · · · |Ln,S) γ−→ (L′
1| · · · |L′

n,S ′)

Sequencing is weak:

G1 ∩ γ = ∅ G2
ψ,γ−−→ G′

2

G1 ;G2
ψ,γ−−→ G1 ;G′

2

[Rensink&Wehrheim, CONCUR’94]
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The details...

Well-formedness:

In G1 ‖G2, the channels that occur in G1 are disjoint
from those that occur in G2

In if
∧{er}r∈R G1 G2 and while

∧{er}r∈R {ψinv}G,
every process has a conjunct (multiparty conditions are “total”)
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The details...

Predicate transformer: (excerpt)

φ(q.y :=e, χ) = χ[e/q.y]

φ(p.e_q.y, χ) = χ[e/q.y]

φ(G1 ;G2, χ) = φ(G1,φ(G2, χ))

φ(G1 ‖G2, χ) ={
φ(G1,φ(G2, χ)) if var(G1) ∩ var(G2) = ∅
false otherwise

←− Surprisingly

complicated case

←− Essential for
deadlock freedom

Essential for deadlock

freedom −→
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Question: Can we construct a functionally-correct and
deadlock-free program for, e.g., leader election?

Answer: No Yes

Question: Why not?

Answer: (1) No theory of functional correctness; (2) No
theory of deadlock freedom of “multiparty conditions”

Thank you (future work: asynchrony, and more)

Contributions
– What?

(1) Functional
correctness

(2) Deadlock fr. +
multiparty conditions

Contributions
– How?

A predicate
transformer for
global programs

A Predicate Transformer for Choreographies
7

1. (P1.[seed, id1, id2, id3, lead
er] :=[-1, -1, -1, -1, false] ‖

2. P2.[seed, id1, id2, id3, lead
er] :=[-1, -1, -1, -1, false] ‖

3. P3.[seed, id1, id2, id3, lead
er] :=[-1, -1, -1, -1, false]) ;

4. while
∧{r.!maxIsUnique(id1,id2,id3)}r∈{P1,P2,P3}

5. (P1.seed :=seed+1 ; P1.id1 :=random1(seed) ; P1.id1_ [P3.id1,P2.id1] ‖

6. P2.seed :=seed+1 ; P2.id2 :=random2(seed) ; P2.id2_ [P1.id2,P3.id2] ‖

7. P3.seed :=seed+1 ; P3.id3 :=random3(seed) ; P3.id3_ [P2.id3,P1.id3]) ;

8. if
∧{r.id1 == max(id1,id2,id3)}r∈{P1,P2,P3} (P1.leader :=true) (skip) ;

9. if
∧{r.id2 == max(id1,id2,id3)}r∈{P1,P2,P3} (P2.leader :=true) (skip) ;

10. if
∧{r.id3 == max(id1,id2,id3)}r∈{P1,P2,P3} (P3.leader :=true) (skip)

Fig. 3: Global program for probabilistic leader elect
ion in anonymous clique net-

works (k=3), using decentralised decision making

making inherently requires the presence of a distinguished process (to evaluate

a one-party condition and share the outcome). However, the motivation to run

a leader election algorithm in the first place is that such a distinguished process

is not yet agreed upon. That is, centralised decision making requires asymmetry

of processes, whereas leader
election algorithms require symmetry.

3 Setting the Stage: Data and Conditions

The topic of interest in this paper is “processes that
communicate”, rather than

“data that are communicated”. For this reason, w
e assume that there exists some

underlying calculus of data (Sect. 3.1), but we omit most of its details; they are

orthogonal to this paper’s contributions. O
n top of it, we adopt a logic to write

preconditions, postcondition
s, and conditions in if/while-statements (Sect. 3.2).

3.1 Data

Let R = {A,B,C, . . .} denote a universe of roles, ranged over by p, q, r. Let

X = {x, y, z, . . .} denote a universe of variables, ranged over by x, y, z. Let V =

{error, true, false, 0, 1, 2, . . .} denote a universe of values, ranged over by v

(i.e., V contains at least a distinguished value error, booleans, and numbers,

but we also use other data ty
pes in examples, including functions). Le

t E denote a

universe of expressions, rang
ed over by e; it is induced by the following grammar:

e ::= r.x︸︷︷︸
role-qualified variable

∣∣ v
∣∣ e1==e2

∣∣ e1<e2
∣∣ e1&&e2

∣∣ !e
∣∣ e1+e2

∣∣ · · ·
︸ ︷︷ ︸

compound expressions

Let S = R⇀ (X⇀ V) denote a universe of states (i.e., partial functions from

roles to partial functions from variables to values), ranged over by S; the idea is

that every state has a separate section for every role of interest, to model disjoint

memory spaces. Let eval : S × E → V denote a total evaluation function. For

instance, eval{A7→{x7→5,y7→6}}(A.x+A.y) = 11. We assume that bogus expressions

are evaluated to error. For instance, eval∅(1+true) = error.
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(i.e., V contains at least a distinguished value error, booleans, and numbers,

but we also use other data ty
pes in examples, including functions). Le

t E denote a

universe of expressions, rang
ed over by e; it is induced by the following grammar:

e ::= r.x︸︷︷︸
role-qualified variable

∣∣ v
∣∣ e1==e2

∣∣ e1<e2
∣∣ e1&&e2

∣∣ !e
∣∣ e1+e2

∣∣ · · ·
︸ ︷︷ ︸

compound expressions

Let S = R⇀ (X⇀ V) denote a universe of states (i.e., partial functions from

roles to partial functions from variables to values), ranged over by S; the idea is

that every state has a separate section for every role of interest, to model disjoint

memory spaces. Let eval : S × E → V denote a total evaluation function. For

instance, eval{A 7→{x 7→5,y 7→6}}(A.x+A.y) = 11. We assume that bogus expressions

are evaluated to error. For instance, eval∅(1+true) = error.
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Question: Can we construct a functionally-correct and
deadlock-free program for, e.g., leader election?

Answer: No Yes

Question: Why not?

Answer: (1) No theory of functional correctness; (2) No
theory of deadlock freedom of “multiparty conditions”

Thank you (future work: asynchrony, and more)

Contributions
– What?

(1) Functional
correctness

(2) Deadlock fr. +
multiparty conditions

Contributions
– How?

A predicate
transformer for
global programs

A Predicate Transformer for Choreographies
7

1. (P1.[seed, id1, id2, id3, lead
er] :=[-1, -1, -1, -1, false] ‖

2. P2.[seed, id1, id2, id3, lead
er] :=[-1, -1, -1, -1, false] ‖

3. P3.[seed, id1, id2, id3, lead
er] :=[-1, -1, -1, -1, false]) ;

4. while
∧{r.!maxIsUnique(id1,id2,id3)}r∈{P1,P2,P3}

5. (P1.seed :=seed+1 ; P1.id1 :=random1(seed) ; P1.id1_ [P3.id1,P2.id1] ‖

6. P2.seed :=seed+1 ; P2.id2 :=random2(seed) ; P2.id2_ [P1.id2,P3.id2] ‖

7. P3.seed :=seed+1 ; P3.id3 :=random3(seed) ; P3.id3_ [P2.id3,P1.id3]) ;

8. if
∧{r.id1 == max(id1,id2,id3)}r∈{P1,P2,P3} (P1.leader :=true) (skip) ;

9. if
∧{r.id2 == max(id1,id2,id3)}r∈{P1,P2,P3} (P2.leader :=true) (skip) ;

10. if
∧{r.id3 == max(id1,id2,id3)}r∈{P1,P2,P3} (P3.leader :=true) (skip)

Fig. 3: Global program for probabilistic leader elect
ion in anonymous clique net-

works (k=3), using decentralised decision making

making inherently requires the presence of a distinguished process (to evaluate

a one-party condition and share the outcome). However, the motivation to run

a leader election algorithm in the first place is that such a distinguished process

is not yet agreed upon. That is, centralised decision making requires asymmetry

of processes, whereas leader
election algorithms require symmetry.

3 Setting the Stage: Data and Conditions

The topic of interest in this paper is “processes that
communicate”, rather than

“data that are communicated”. For this reason, w
e assume that there exists some

underlying calculus of data (Sect. 3.1), but we omit most of its details; they are

orthogonal to this paper’s contributions. O
n top of it, we adopt a logic to write

preconditions, postcondition
s, and conditions in if/while-statements (Sect. 3.2).

3.1 Data

Let R = {A,B,C, . . .} denote a universe of roles, ranged over by p, q, r. Let

X = {x, y, z, . . .} denote a universe of variables, ranged over by x, y, z. Let V =

{error, true, false, 0, 1, 2, . . .} denote a universe of values, ranged over by v

(i.e., V contains at least a distinguished value error, booleans, and numbers,

but we also use other data ty
pes in examples, including functions). Le

t E denote a

universe of expressions, rang
ed over by e; it is induced by the following grammar:

e ::= r.x︸︷︷︸
role-qualified variable

∣∣ v
∣∣ e1==e2

∣∣ e1<e2
∣∣ e1&&e2

∣∣ !e
∣∣ e1+e2

∣∣ · · ·
︸ ︷︷ ︸

compound expressions

Let S = R⇀ (X⇀ V) denote a universe of states (i.e., partial functions from

roles to partial functions from variables to values), ranged over by S; the idea is

that every state has a separate section for every role of interest, to model disjoint

memory spaces. Let eval : S × E → V denote a total evaluation function. For

instance, eval{A7→{x7→5,y7→6}}(A.x+A.y) = 11. We assume that bogus expressions

are evaluated to error. For instance, eval∅(1+true) = error.
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