A Predicate Transformer for Choreographies [ESOP'22]

Sung-Shik Jongmans^{1,2} and Petra van den Bos³

¹ Open University of the Netherlands
 ² Centrum Wiskunde & Informatica (CWI)
 ³ University of Twente

Long-term research aim:

Develop theoretical **foundations**

and practical tools to make

concurrent programming easier

<u>3/14</u>							
	Suppose that a program consists of:						
	1. ???	2. ???	3. ???				

Choreographic programming in a nutshell:
1. ???
2. ???
[Carbone et al., ESOP'07/TOPLAS; Carbone & Montesi, POPL'13]

1. Write global program G (manually)

2. ???

1. Write global program G (manually)

Theorem: G is deadlock-free

2. ???

1. Write global program G (manual

Theorem: G is defined as G is defined as G.

1. Write global program $G = C.18 \rightarrow A.x;$ $A.(x*6) \rightarrow B.y;$ if B.(y%14==0) $B."foo" \rightarrow C.z$

2. ???

1. Write global program

$$G = C.18 \rightarrow A.x;$$

$$A.(x*6) \rightarrow B.y;$$
if
$$B.(y\%14==0)$$

$$B."foo" \rightarrow C.z$$

2. ???

[Carbone et al., ESOP'07/TOPLAS; Carbone & Montesi, POPL'13]

а

1. Write global program G (manually)

Theorem: G is deadlock-free

2. Decompose into local programs L_1, \ldots, L_n (automatically)

1. Write global program G (manually)

Theorem: G is deadlock-free

2. Decompose into local programs L_1, \ldots, L_n (automatically)

1. Write global program G (manually)

Theorem: G is deadlock-free

2. Decompose into local programs L_1, \ldots, L_n (automatically)

Theorem:		Corollary:
$G \approx L_1 \cdots L_n$	[$L_1 \cdots L_n$ is deadlock-free

 $G = C.18 \rightarrow A.x$; A. $(x * 6) \rightarrow B.y$; if B.(y%14==0) B."foo" \rightarrow C.z

Question: Can we construct a functionally-correct and deadlock-free program for, e.g., *leader election*?

Answer: ???

Question: Can we construct a functionally-correct and deadlock-free program for, e.g., *leader election*?

Answer: No

Question: Can we construct a functionally-correct and deadlock-free program for, e.g., *leader election*?

Answer: No

Question: Why not?

Answer: ???
Question: Can we construct a functionally-correct and deadlock-free program for, e.g., *leader election*?

Answer: No

Question: Why not?

Answer: (1) No theory of functional correctness; (2) No theory of deadlock freedom of "multiparty conditions"

Deadlock freedom: Always, reduce or terminate

Deadlock freedom: Always, reduce or terminate

- One-party condition: (centralised; existing)

if $p.e (p.true \rightarrow q_1.x_1; \ldots; p.true \rightarrow q_n.x_n; G_{true})$ $(p.false \rightarrow q_1.x_1; \ldots; p.false \rightarrow q_n.x_n; G_{false})$

Deadlock freedom: Always, reduce or terminate

- One-party condition: (centralised; existing)

Needed: One-to-all communications ("easy" to check)

if p.e ($p.\texttt{true} \rightarrow q_1.x_1$; ...; $p.\texttt{true} \rightarrow$

 $(p.\texttt{false} \rightarrow q_1.x_1; \ldots; p.\texttt{false} \rightarrow q_n.x_n; G_\texttt{false})$

Deadlock freedom: Always, reduce or terminate

- One-party condition: (centralised; existing)

if $p.e (p.true \rightarrow q_1.x_1; \ldots; p.true \rightarrow$

 $(p.\texttt{false} \rightarrow q_1.x_1; \ldots; p.\texttt{false} \rightarrow q_n.x_n; G_\texttt{false})$

Needed:

One-to-all communications ("easy" to check)

- Multiparty condition: (decentralised; new)

if $(r_1.e_1 \wedge \cdots \wedge r_n.e_n) G_{\texttt{true}} G_{\texttt{false}}$

Deadlock freedom: Always, reduce or terminate

- One-party condition: (centralised; existing)

if $p.e (p.true \rightarrow q_1.x_1; \ldots; p.true \rightarrow$

Needed: One-to-all communications ("easy" to check)

 $(p.\texttt{false} \rightarrow q_1.x_1; \ldots; p.\texttt{false} \rightarrow q_n.x_n; G_{\texttt{false}})$

- Multiparty condition: (decentralised; new)

Needed: Unanimity among all ("hard" to check)

if $(r_1.e_1 \wedge \cdots \wedge r_n.e_n) G_{true}$

Deadlock freedom: Always, reduce or terminate

- One-party condition: (centralised; existing)

if $p.e (p.true \rightarrow q_1.x_1; \ldots; p.true \rightarrow q_1.x_1; \ldots;$

Needed: One-to-all communications ("easy" to check)

 $(p.\texttt{false} \rightarrow q_1.x_1; \ldots; p.\texttt{false} \rightarrow q_n.x_n; G_\texttt{false})$

- Multiparty condition: (decentralised; new)

Needed: Unanimity among all ("hard" to check)

if $(r_1.e_1 \wedge \cdots \wedge r_n.e_n) G_{true}$

predicate transformer

This paper: "Kill two birds with one stone"

functional correctness and deadlock freedom

+ multiparty conditions

Main results

Main results

Theorem: If G is well-formed and $\phi(G, \chi) \equiv \top$, then G is functionally correct and deadlock-free (+ multiparty conditions)

Main results

Theorem: If G is well-formed and $\phi(G, \chi) \equiv \top$, then G is functionally correct and deadlock-free (+ multiparty conditions)

Theorem: If G is well-formed and $\phi(G, \chi) \equiv \top$, then $G \approx L_1 | \cdots | L_n$

Main results

Theorem: If G is well-formed and $\phi(G, \chi) \equiv \top$, then G is functionally correct and deadlock-free (+ multiparty conditions)

Theorem: If G is well-formed and $\phi(G, \chi) \equiv \top$, then $G \approx L_1 | \cdots | L_n$

Corollary: If G is well-formed and $\phi(G, \chi) \equiv \top$, then $L_1 | \cdots | L_n$ is functionally correct and deadlock-free (+ multiparty conditions)

Main results

Theorem: If G is well-formed and $\phi(G, \chi) \equiv \top$, then G is functionally correct and deadlock-free (+ multiparty conditions)

Theorem: If G is well-formed and $\phi(G, \chi) \equiv \top$, then $G \approx L_1 | \cdots | L_n$

Corollary: If G is well-formed and $\phi(G, \chi) \equiv \top$, then $L_1 | \cdots | L_n$ is functionally correct and deadlock-free (+ multiparty conditions)

Thank you (future work: asynchrony, and more)