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deadlock-free program for, e.g., leader election?

Answer: No

Question: Why not?

Answer: (1) No theory of functional correctness; (2) No
theory of deadlock freedom of “multiparty conditions”
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G=Ax—+Bx;
By—Ay;

if (A.(x==y) AB.(x!=y))
B."foo" —+A.z
A."bar" —+B.z

Needed:
Unanimity among all
(“hard” to check)
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Corollary: If G is well-formed and (G, x) = T, then
Lq|---|L, is functionally correct and deadlock-free (+
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Semantics: .
Sequencmg is weak:
N . . Gl m ’y = @ G w,’}/ ’
— Abstract reductions: (symbolic) 2 7EY GGy
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/
2
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Well-formedness:

- In Gy || G4, the channels that occur in G are disjoint
from those that occur in G,

-Inif A{e, },cr G1 G2 and while A{e,},cr G,

€Very process has a conjunct (multiparty conditions are “total”)
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. (Pl.[seed, id1,1d2, 143, 1eader]:=[-1,-1,-1 _1,false] ||
P2.[seed, id1,1d2, id3, leader] 1,-1,-1,-1,false| ||
P3.[seed, 1d1,1d2,1d3, leader -1,-1,-1,false]):
while \{r.!maxIsUnique(idl, 142,143) } e (19293}
(Pl.seed P1.id1:=randomi(seed) ; P1. id1-»[P3.1d1,P2 id1] H
P2.seed:=seed+1; P2.id random2(seed) p2.1d2—»[P1.1d2.P3. id2] ||
seed+1: P3- id3: 3.1d3 —[P2.1d3, P1. 1a3]) 5
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Thank YOU (future work: asynchrony, and more)
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