
Formal Models and Specifications for
Systems of Interacting Components
Part 2: Communication-Safe Team Automata and

Specification of Team Properties

Rolf Hennicker

Ludwig-Maximilians-Universität München, Germany

DaVinci Spring School, Univ. do Minho, March 24-25, 2022

Thanks to Maurice ter Beek and Jetty Kleijn

1 / 89

Topics of this lecture

• Systems of reactive components which interact through
message exchange.

• Here: Synchronous communication, i.e., outputs and inputs of
the same message are performed simultaneously (handshake).

• Consideration of various synchronization types
(peer-to-peer, multicast, broadcast, gathering, ...).

• Safe communication, avoidance of communication errors.

• Specification of behavioural system properties using a variant
of dynamic logic.

2 / 89

Topics of this lecture

• Systems of reactive components which interact through
message exchange.

• Here: Synchronous communication, i.e., outputs and inputs of
the same message are performed simultaneously (handshake).

• Consideration of various synchronization types
(peer-to-peer, multicast, broadcast, gathering, ...).

• Safe communication, avoidance of communication errors.

• Specification of behavioural system properties using a variant
of dynamic logic.

3 / 89

Topics of this lecture

• Systems of reactive components which interact through
message exchange.

• Here: Synchronous communication, i.e., outputs and inputs of
the same message are performed simultaneously (handshake).

• Consideration of various synchronization types
(peer-to-peer, multicast, broadcast, gathering, ...).

• Safe communication, avoidance of communication errors.

• Specification of behavioural system properties using a variant
of dynamic logic.

4 / 89

Component Systems: Running Example

0

1

2

start? run

finish!

Runner1

0

1

2

start? run

finish!

Runner2

0

2

1
start!

finish?finish?

Controller

5 / 89

Component Systems: Definitions

Component automaton is a tuple A = (Q, q0,Σ,→) such that

• Q is a finite set of states, q0 ∈ Q is the initial state,

• Σ is the disjoint union of sets Σinp, Σout , Σint of
input, output, and internal actions,

• → ⊆ Q × Σ× Q is a labelled transition relation.

Component system is an indexed set S = {Ai | i ∈ I } of
component automata Ai = (Qi , q

0
i ,Σi ,→i).

We assume that the index set I is finite.

A system is closed, if for any input action a ∈ Σi ,inp of some
component i ∈ I there is a corresponding output action a ∈ Σj ,out

of another component j ∈ I , and conversely.

In the sequel we consider closed systems.

6 / 89

Component Systems: Definitions

Component automaton is a tuple A = (Q, q0,Σ,→) such that

• Q is a finite set of states, q0 ∈ Q is the initial state,

• Σ is the disjoint union of sets Σinp, Σout , Σint of
input, output, and internal actions,

• → ⊆ Q × Σ× Q is a labelled transition relation.

Component system is an indexed set S = {Ai | i ∈ I } of
component automata Ai = (Qi , q

0
i ,Σi ,→i).

We assume that the index set I is finite.

A system is closed, if for any input action a ∈ Σi ,inp of some
component i ∈ I there is a corresponding output action a ∈ Σj ,out

of another component j ∈ I , and conversely.

In the sequel we consider closed systems.

7 / 89

Component Systems (continued)

System state is a tuple (qi)i∈I with qi ∈ Qi for all i ∈ I .

System transition is a transition between system states

(qi)i∈I
(outs,a,ins)−−−−−−−−→ (q′i)i∈I

such that

• either: a is an internal action of some component Ai and
outs = {i}, ins = ∅, qi

a−→i q
′
i and qj = q′j for all j ∈ I \ {i},

• or: outs, ins ⊆ I , outs ∩ ins ̸= ∅, and
for all i ∈ outs: a is an output action of Ai ,
for all i ∈ ins: a is an input action of Ai ,

qi
a−→i q

′
i for all i ∈ outs ∪ ins, i.e. simultaneous execution, and

qi = q′i for all i ∈ I \ (outs ∪ ins).

outs indicates the senders of a, ins the receivers of a.

Not all system transitions are meaningful in an application!
8 / 89

Component Systems (continued)

System state is a tuple (qi)i∈I with qi ∈ Qi for all i ∈ I .

System transition is a transition between system states

(qi)i∈I
(outs,a,ins)−−−−−−−−→ (q′i)i∈I

such that

• either: a is an internal action of some component Ai and
outs = {i}, ins = ∅, qi

a−→i q
′
i and qj = q′j for all j ∈ I \ {i},

• or: outs, ins ⊆ I , outs ∩ ins ̸= ∅, and
for all i ∈ outs: a is an output action of Ai ,
for all i ∈ ins: a is an input action of Ai ,

qi
a−→i q

′
i for all i ∈ outs ∪ ins, i.e. simultaneous execution, and

qi = q′i for all i ∈ I \ (outs ∪ ins).

outs indicates the senders of a, ins the receivers of a.

Not all system transitions are meaningful in an application!
9 / 89

Component Systems (continued)

System state is a tuple (qi)i∈I with qi ∈ Qi for all i ∈ I .

System transition is a transition between system states

(qi)i∈I
(outs,a,ins)−−−−−−−−→ (q′i)i∈I

such that

• either: a is an internal action of some component Ai and
outs = {i}, ins = ∅, qi

a−→i q
′
i and qj = q′j for all j ∈ I \ {i},

• or: outs, ins ⊆ I , outs ∩ ins ̸= ∅, and
for all i ∈ outs: a is an output action of Ai ,
for all i ∈ ins: a is an input action of Ai ,

qi
a−→i q

′
i for all i ∈ outs ∪ ins, i.e. simultaneous execution, and

qi = q′i for all i ∈ I \ (outs ∪ ins).

outs indicates the senders of a, ins the receivers of a.

Not all system transitions are meaningful in an application!
10 / 89

Component Systems (continued)

System state is a tuple (qi)i∈I with qi ∈ Qi for all i ∈ I .

System transition is a transition between system states

(qi)i∈I
(outs,a,ins)−−−−−−−−→ (q′i)i∈I

such that

• either: a is an internal action of some component Ai and
outs = {i}, ins = ∅, qi

a−→i q
′
i and qj = q′j for all j ∈ I \ {i},

• or: outs, ins ⊆ I , outs ∩ ins ̸= ∅, and
for all i ∈ outs: a is an output action of Ai ,
for all i ∈ ins: a is an input action of Ai ,

qi
a−→i q

′
i for all i ∈ outs ∪ ins, i.e. simultaneous execution, and

qi = q′i for all i ∈ I \ (outs ∪ ins).

outs indicates the senders of a, ins the receivers of a.

Not all system transitions are meaningful in an application!
11 / 89

Component Systems (continued)

System state is a tuple (qi)i∈I with qi ∈ Qi for all i ∈ I .

System transition is a transition between system states

(qi)i∈I
(outs,a,ins)−−−−−−−−→ (q′i)i∈I

such that

• either: a is an internal action of some component Ai and
outs = {i}, ins = ∅, qi

a−→i q
′
i and qj = q′j for all j ∈ I \ {i},

• or: outs, ins ⊆ I , outs ∩ ins ̸= ∅, and
for all i ∈ outs: a is an output action of Ai ,
for all i ∈ ins: a is an input action of Ai ,

qi
a−→i q

′
i for all i ∈ outs ∪ ins, i.e. simultaneous execution, and

qi = q′i for all i ∈ I \ (outs ∪ ins).

outs indicates the senders of a, ins the receivers of a.

Not all system transitions are meaningful in an application!
12 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

13 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

00

0

1

11

22

2

start?

start?

start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

14 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

15 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

00

0

1

11

2

2

start?

start?

start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

16 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

17 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

1

11
start!

start!

start!

finish?

finish?finish?

finish?

finish?

Controller

18 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

19 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

00

0

1

11

22

2

start?

start?

start?

run

run1

finish!

finish!finish!

Runner1

00

0

1

11

2

2

start?

start?

start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

20 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

21 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

00

0

1

11

22

2

start?

start?

start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

1

11
start!

start!

start!

finish?

finish?finish?

finish?

finish?

Controller

22 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

23 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

00

0

1

11

2

2

start?

start?

start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

1

11
start!

start!

start!

finish?

finish?finish?

finish?

finish?

Controller

24 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

25 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

00

0

1

1

1

22

2

start?start?

start? run

run1

finish!

finish!finish!

Runner1

0

0

0

11

1

2

2

start?start?

start? run

run2

finish!

finish!finish!

Runner2

0

0

22

2

1

1

1
start!start!

start!

finish?

finish?finish?

finish?

finish?

Controller

Controller starts the two runners together.

26 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

00

0

1

1

1

22

2

start?start?

start? run

run1

finish!

finish!finish!

Runner1

00

0

11

1

2

2

start?start?

start? run

run2

finish!

finish!finish!

Runner2

0

0

22

2

1

1

1
start!start!

start!

finish?

finish?finish?

finish?

finish?

Controller

Controller starts the two runners together.

27 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

00

0

11

1

2

2

2

start?

start?start? run

run1

finish!

finish!finish!

Runner1

00

0

1

1

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

1

1

1

start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

Controller starts the two runners together.
Runner1 runs.

28 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

00

0

11

1

2

2

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

00

0

11

1

2

2

start?

start?start? run

run2

finish!

finish!finish!

Runner2

0

0

22

2

1

1

1

start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

Controller starts the two runners together.
Runner1 runs.
Runner2 runs.

29 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

0

0

11

1

2

2

2

start?

start?start?

run

run1

finish!

finish!

finish!

Runner1

00

0

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

1

1

1

start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

Controller starts the two runners together.
Runner1 runs.
Runner2 runs.

30 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

00

0

11

1

2

2

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

00

0

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

1

1

1

start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

Controller starts the two runners together.
Runner1 runs.
Runner2 runs.

31 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

0

0

11

1

22

2

start?

start?start?

run

run1

finish!

finish!

finish!

Runner1

0

0

0

11

1

22

start?

start?start?

run

run2

finish!

finish!

finish!

Runner2

0

0

2

22

11

1
start!

start!start!

finish?

finish?

finish?

finish?

finish?

Controller

Controller starts the two runners together.
Runner1 runs.
Runner2 runs.

32 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

00

0

11

1

2

2

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

00

0

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

1

1

1

start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

Controller starts the two runners together.
Runner1 runs.
Runner2 runs.

33 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!finish!

finish!

Runner1

00

0

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

2

2

2

11

1
start!

start!start!

finish?finish?

finish?finish?

finish?

Controller

Controller starts the two runners together.
Runner1 runs.
Runner2 runs.
Runner1 signals finish to the Controller .

34 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!finish!

finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?finish?

finish?

Controller

Controller starts the two runners together.
Runner1 runs.
Runner2 runs.
Runner1 signals finish to the Controller .
Runner2 signals finish to the Controller .

35 / 89

System Transitions: Example

(0, 0, 0)
({Controller},start,{Runner1,Runner2})−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1)

0

00

11

1

22

2

start?

start?start?

run

run1

finish!

finish!finish!

Runner1

0

00

11

1

2

2

start?

start?start?

run

run2

finish!

finish!finish!

Runner2

0

0

22

2

11

1
start!

start!start!

finish?

finish?finish?

finish?

finish?

Controller

Controller starts the two runners together.
Runner1 runs.
Runner2 runs.
Runner1 signals finish to the Controller .
Runner2 signals finish to the Controller .

Idea: Given a system S of reactive components, choose a
synchronization policy δ which is a selected subset of system
transitions appropriate for your application.

How to specify synchronization policies? 36 / 89

Synchronization Types

Let S = {Ai | i ∈ I } be a component system.

Idea:

Specify, for each non-internal action a in S, how many senders and
how many receivers are allowed to participate in a system transition

(qi)i∈I
(outs,a,ins)−−−−−−−−→ (q′i)i∈I .

Formally:

A synchronization type is a pair snd → rcv consisting of

– a sending multiplicity snd and

– a receiving multiplicity rcv

where a multiplicity has the form

– [min, max] with min ∈ N, max ∈ N ∪ {∗} such that min ≤ max,

A synchronization type specification st over S assigns to each
non-internal action a in S a synchronization type st(a).

37 / 89

Synchronization Types

Let S = {Ai | i ∈ I } be a component system.

Idea:

Specify, for each non-internal action a in S, how many senders and
how many receivers are allowed to participate in a system transition

(qi)i∈I
(outs,a,ins)−−−−−−−−→ (q′i)i∈I .

Formally:

A synchronization type is a pair snd → rcv consisting of

– a sending multiplicity snd and

– a receiving multiplicity rcv

where a multiplicity has the form

– [min, max] with min ∈ N, max ∈ N ∪ {∗} such that min ≤ max,

A synchronization type specification st over S assigns to each
non-internal action a in S a synchronization type st(a).

38 / 89

Synchronization Types

Let S = {Ai | i ∈ I } be a component system.

Idea:

Specify, for each non-internal action a in S, how many senders and
how many receivers are allowed to participate in a system transition

(qi)i∈I
(outs,a,ins)−−−−−−−−→ (q′i)i∈I .

Formally:

A synchronization type is a pair snd → rcv consisting of

– a sending multiplicity snd and

– a receiving multiplicity rcv

where a multiplicity has the form

– [min, max] with min ∈ N, max ∈ N ∪ {∗} such that min ≤ max,

A synchronization type specification st over S assigns to each
non-internal action a in S a synchronization type st(a).

39 / 89

Example: Synchronization Types

st(start) = [1, 1] → [2, 2] shortly 1 → 2

This means: In a system transition labelled with start there must
be exactly one sender and two receiver components. According to
the alphabets of the components the sender can only be the
controller and the receivers can only be the two runners.

st(finish) = ([1, 1], [1, 1]) shortly 1 → 1

This means: In any system transition labelled with finish there
must be exactly one sender and one receiver component.
According to the alphabets of the components the sender can only
be a runner and the receiver can only be the controller.

Remark: st(start) = 1 → [0, ∗] would express that exactly one
component (the controller) can send start and arbitrarily many
receivers (runners) can join, even none.

40 / 89

Example: Synchronization Types

st(start) = [1, 1] → [2, 2] shortly 1 → 2

This means: In a system transition labelled with start there must
be exactly one sender and two receiver components. According to
the alphabets of the components the sender can only be the
controller and the receivers can only be the two runners.

st(finish) = ([1, 1], [1, 1]) shortly 1 → 1

This means: In any system transition labelled with finish there
must be exactly one sender and one receiver component.
According to the alphabets of the components the sender can only
be a runner and the receiver can only be the controller.

Remark: st(start) = 1 → [0, ∗] would express that exactly one
component (the controller) can send start and arbitrarily many
receivers (runners) can join, even none.

41 / 89

Example: Synchronization Types

st(start) = [1, 1] → [2, 2] shortly 1 → 2

This means: In a system transition labelled with start there must
be exactly one sender and two receiver components. According to
the alphabets of the components the sender can only be the
controller and the receivers can only be the two runners.

st(finish) = ([1, 1], [1, 1]) shortly 1 → 1

This means: In any system transition labelled with finish there
must be exactly one sender and one receiver component.
According to the alphabets of the components the sender can only
be a runner and the receiver can only be the controller.

Remark: st(start) = 1 → [0, ∗] would express that exactly one
component (the controller) can send start and arbitrarily many
receivers (runners) can join, even none.

42 / 89

Team Automaton: Example

Synchronization types:

st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

run

run1

finish!

finish!finish!

Runner1

0

0

1

1

2

2

start?

start?

run

run2

finish!

finish!finish!

Runner2

0

0

2

2

1

1

start!

start!

start!

finish?

finish?

finish?

finish?

Controller

43 / 89

Team Automaton: Example

Synchronization types:

st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start? run

run1

finish!

finish!finish!

Runner1

0

0

1

1

2

2

start?

start? run

run2

finish!

finish!finish!

Runner2

0

0

2

2

1

1
start!start!

start!

finish?

finish?

finish?

finish?

Controller

44 / 89

Team Automaton: Example

Synchronization types:

st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start? run

run1

finish!

finish!

finish!

Runner1

0

0

1

1

2

2

start?

start?

run

run2

finish!

finish!finish!

Runner2

0

0

2

2

1

1

start!

start!start!

finish?

finish?

finish?

finish?

Controller

45 / 89

Team Automaton: Example

Synchronization types:

st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

run

run1

finish!finish!

finish!

Runner1

0

0

1

1

22

start?

start?

run

run2

finish!

finish!finish!

Runner2

0

0

2

2

1

1
start!

start!start!

finish?

finish?finish?

finish?

Controller

46 / 89

Team Automaton: Example

Synchronization types:

st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

run

run1

finish!

finish!finish!

Runner1

0

0

1

1

2

2

start?

start? run

run2

finish!

finish!

finish!

Runner2

0

0

2

2

1

1
start!

start!start!

finish?

finish?

finish?

finish?

Controller

47 / 89

Team Automaton: Example

Synchronization types:

st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

run

run1

finish!

finish!finish!

Runner1

0

0

1

1

2

2

start?

start?

run

run2

finish!finish!

finish!

Runner2

0

0

2

2

1

1
start!

start!start!

finish?

finish?finish?

finish?

Controller

48 / 89

Team Automaton: Example

Synchronization types:

st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

run

run1

finish!

finish!finish!

Runner1

0

0

1

1

2

2

start?

start?

run

run2

finish!

finish!finish!

Runner2

0

0

2

2

1

1

start!

start!

start!

finish?

finish?

finish?

finish?

Controller

49 / 89

Team Automata

Let S = {Ai | i ∈ I } be a component system and
st be a synchronization type specification over S.

st generates a so-called team automaton, denoted by T (st), over
S such that

• the states of T (st) are the system states of S, i.e. tuples
(qi)i∈I with qi component states of Ai for all i ∈ I ,

• the initial state of T (st) is (q0i)i∈I with q0i the initial
component state of Ai for all i ∈ I ,

• the actions of T (st) have the form (outs, a, ins), and

• the transitions of T (st) are
• for internal actions a, all possible system transitions

(qi)i∈I
({j},a,∅)−−−−−−→ (q′i)i∈I ,

• for non-internal actions a, exactly those system transitions

(qi)i∈I
(outs,a,ins)−−−−−−−−→ (q′i)i∈I of S such that (outs, a, ins)

satisfies the synchronization type specification st(a). 50 / 89

Team Automata

Let S = {Ai | i ∈ I } be a component system and
st be a synchronization type specification over S.

st generates a so-called team automaton, denoted by T (st), over
S such that

• the states of T (st) are the system states of S, i.e. tuples
(qi)i∈I with qi component states of Ai for all i ∈ I ,

• the initial state of T (st) is (q0i)i∈I with q0i the initial
component state of Ai for all i ∈ I ,

• the actions of T (st) have the form (outs, a, ins), and

• the transitions of T (st) are
• for internal actions a, all possible system transitions

(qi)i∈I
({j},a,∅)−−−−−−→ (q′i)i∈I ,

• for non-internal actions a, exactly those system transitions

(qi)i∈I
(outs,a,ins)−−−−−−−−→ (q′i)i∈I of S such that (outs, a, ins)

satisfies the synchronization type specification st(a). 51 / 89

Team Automata

Let S = {Ai | i ∈ I } be a component system and
st be a synchronization type specification over S.

st generates a so-called team automaton, denoted by T (st), over
S such that

• the states of T (st) are the system states of S, i.e. tuples
(qi)i∈I with qi component states of Ai for all i ∈ I ,

• the initial state of T (st) is (q0i)i∈I with q0i the initial
component state of Ai for all i ∈ I ,

• the actions of T (st) have the form (outs, a, ins), and

• the transitions of T (st) are
• for internal actions a, all possible system transitions

(qi)i∈I
({j},a,∅)−−−−−−→ (q′i)i∈I ,

• for non-internal actions a, exactly those system transitions

(qi)i∈I
(outs,a,ins)−−−−−−−−→ (q′i)i∈I of S such that (outs, a, ins)

satisfies the synchronization type specification st(a). 52 / 89

Familiar Synchronization Types

1 → 1 binary, peer-to-peer communication

[0, 1] → [0, 1] non-blocking peer-to-peer (CCS)

1 → [0, *] multicast

1 → [1, *] strong multicast

1 → #in(a) strong broadcast
where #in(a) is the number of components
which have a given action a as an input

#out(a) → #in(a) full synchronization (FSP)
where #out(a) is the number of components
which have a given action a as an output

[1, *] → 1 gathering

[0, *] → [0, *] all system transitions

53 / 89

Receptiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of receptiveness:
Whenever a group of components in the team is ready to send
(simultaneously) a message a (in accordance with st(a)), then
there should be components in the team which are ready to receive
a (in accordance with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

run

run1

finish!

finish!finish!

Runner1

0

0

1

1

2

2

start?

start?

run

run2

finish!

finish!finish!

Runner2

0

0

2

2

1

1

start!

start!

start!

finish?

finish?

finish?

finish?

Controller

54 / 89

Receptiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of receptiveness:
Whenever a group of components in the team is ready to send
(simultaneously) a message a (in accordance with st(a)), then
there should be components in the team which are ready to receive
a (in accordance with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start? run

run1

finish!

finish!finish!

Runner1

0

0

1

1

2

2

start?

start? run

run2

finish!

finish!finish!

Runner2

0

0

2

2

1

1
start!start!

start!

finish?

finish?

finish?

finish?

Controller

55 / 89

Receptiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of receptiveness:
Whenever a group of components in the team is ready to send
(simultaneously) a message a (in accordance with st(a)), then
there should be components in the team which are ready to receive
a (in accordance with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start? run

run1

finish!

finish!

finish!

Runner1

0

0

1

1

2

2

start?

start?

run

run2

finish!

finish!finish!

Runner2

0

0

2

2

1

1

start!

start!start!

finish?

finish?

finish?

finish?

Controller

56 / 89

Receptiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of receptiveness:
Whenever a group of components in the team is ready to send
(simultaneously) a message a (in accordance with st(a)), then
there should be components in the team which are ready to receive
a (in accordance with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

run

run1

finish!finish!

finish!

Runner1

0

0

1

1

22

start?

start?

run

run2

finish!

finish!finish!

Runner2

0

0

2

2

1

1
start!

start!start!

finish?

finish?finish?

finish?

Controller

57 / 89

Receptiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of receptiveness:
Whenever a group of components in the team is ready to send
(simultaneously) a message a (in accordance with st(a)), then
there should be components in the team which are ready to receive
a (in accordance with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

run

run1

finish!

finish!finish!

Runner1

0

0

1

1

2

2

start?

start? run

run2

finish!

finish!

finish!

Runner2

0

0

2

2

1

1
start!

start!start!

finish?

finish?

finish?

finish?

Controller

58 / 89

Receptiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of receptiveness:
Whenever a group of components in the team is ready to send
(simultaneously) a message a (in accordance with st(a)), then
there should be components in the team which are ready to receive
a (in accordance with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

run

run1

finish!

finish!finish!

Runner1

0

0

1

1

2

2

start?

start?

run

run2

finish!finish!

finish!

Runner2

0

0

2

2

1

1
start!

start!start!

finish?

finish?finish?

finish?

Controller

59 / 89

Receptiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of receptiveness:
Whenever a group of components in the team is ready to send
(simultaneously) a message a (in accordance with st(a)), then
there should be components in the team which are ready to receive
a (in accordance with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

run

run1

finish!

finish!finish!

Runner1

0

0

1

1

2

2

start?

start?

run

run2

finish!

finish!finish!

Runner2

0

0

2

2

1

1

start!

start!

start!

finish?

finish?

finish?

finish?

Controller

60 / 89

Receptiveness Formally

For any reachable state (qi)i∈I of T (st) and for any (non-internal)
action a with st(a) = [out1, out2] → [in1, in2] we require:

If there is a group of components G = {Aj | j ∈ J ⊆ I } having
a as an output action such that

• a is enabled in each local state qj with j ∈ J and
• out1 ≤ |G| ≤ out2

then there exists a group of components H = {Ak | k ∈ K ⊆ I }
having a as an input action such that

• a is enabled in each local state qk with k ∈ K and
• in1 ≤ |H| ≤ in2.

Hence, the team T (st) can perform a transition

(qi)i∈I
(J,a,K)−−−−−−→ (q′i)i∈I

61 / 89

Receptiveness Formally

For any reachable state (qi)i∈I of T (st) and for any (non-internal)
action a with st(a) = [out1, out2] → [in1, in2] we require:

If there is a group of components G = {Aj | j ∈ J ⊆ I } having
a as an output action such that

• a is enabled in each local state qj with j ∈ J and
• out1 ≤ |G| ≤ out2

then there exists a group of components H = {Ak | k ∈ K ⊆ I }
having a as an input action such that

• a is enabled in each local state qk with k ∈ K and
• in1 ≤ |H| ≤ in2.

Hence, the team T (st) can perform a transition

(qi)i∈I
(J,a,K)−−−−−−→ (q′i)i∈I

62 / 89

Responsiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of responsiveness:
Whenever a group of components in the team waits to receive a
message a (in accordance with st(a)), then there should be
components in the team which are ready to send a (in accordance
with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

start?

run

run1

finish!

finish!

Runner1

0

0

1

1

2

2

start?

start?

start?

run

run2

finish!

finish!

Runner2

0

0

2

2

1

1
start!

start!

finish?

finish?finish?

finish?

finish?finish?

Controller

63 / 89

Responsiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of responsiveness:
Whenever a group of components in the team waits to receive a
message a (in accordance with st(a)), then there should be
components in the team which are ready to send a (in accordance
with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?start?

start? run

run1

finish!

finish!

Runner1

0

0

1

1

2

2

start?start?

start? run

run2

finish!

finish!

Runner2

0

0

2

2

1

1
start!

start!

finish?

finish?

finish?

finish?

finish?finish?

Controller

64 / 89

Responsiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of responsiveness:
Whenever a group of components in the team waits to receive a
message a (in accordance with st(a)), then there should be
components in the team which are ready to send a (in accordance
with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?start? run

run1

finish!

finish!

Runner1

0

0

1

1

2

2

start?

start?start?

run

run2

finish!

finish!

Runner2

0

0

2

2

1

1

start!

start!

finish?

finish?

finish?

finish?

finish?finish?

Controller

65 / 89

Responsiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of responsiveness:
Whenever a group of components in the team waits to receive a
message a (in accordance with st(a)), then there should be
components in the team which are ready to send a (in accordance
with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?start?

run

run1

finish!

finish!

Runner1

0

0

1

1

22

start?

start?start?

run

run2

finish!

finish!

Runner2

0

0

2

2

1

1
start!

start!

finish?finish?

finish?

finish?

finish?

finish?

Controller

66 / 89

Responsiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of responsiveness:
Whenever a group of components in the team waits to receive a
message a (in accordance with st(a)), then there should be
components in the team which are ready to send a (in accordance
with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?start?

run

run1

finish!

finish!

Runner1

0

0

1

1

2

2

start?

start?start? run

run2

finish!

finish!

Runner2

0

0

2

2

1

1
start!

start!

finish?

finish?finish?finish?

finish?

finish?

Controller

67 / 89

Responsiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of responsiveness:
Whenever a group of components in the team waits to receive a
message a (in accordance with st(a)), then there should be
components in the team which are ready to send a (in accordance
with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?start?

run

run1

finish!

finish!

Runner1

0

0

1

1

2

2

start?

start?start?

run

run2

finish!

finish!

Runner2

0

0

2

2

1

1
start!

start!

finish?

finish?finish?finish?finish?

finish?

Controller

68 / 89

Responsiveness

Let T (st) be a team automaton generated by a synchronization
type specification st over system S = {Ai | i ∈ I }.

Idea of responsiveness:
Whenever a group of components in the team waits to receive a
message a (in accordance with st(a)), then there should be
components in the team which are ready to send a (in accordance
with st(a)).

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

0

1

1

2

2

start?

start?

start?

run

run1

finish!

finish!

Runner1

0

0

1

1

2

2

start?

start?

start?

run

run2

finish!

finish!

Runner2

0

0

2

2

1

1
start!

start!

finish?

finish?finish?

finish?

finish?finish?

Controller

69 / 89

Responsiveness Formally

For any reachable state (qi)i∈I of T (st) and for any (non-internal)
action a with st(a) = [out1, out2] → [in1, in2] we require:

If there is a group of components G = {Aj | j ∈ J ⊆ I } having
a as an input action such that

• a is enabled in each local state qj with j ∈ J and
• in1 ≤ |G| ≤ in2

then there exists a group of components H = {Ak | k ∈ K ⊆ I }
having a as an output action such that

• a is enabled in each local state qk with k ∈ K and
• out1 ≤ |H| ≤ out2.

Hence, the team T (st) can perform a transition

(qi)i∈I
(K ,a,J)−−−−−−→ (q′i)i∈I

70 / 89

Responsiveness Formally

For any reachable state (qi)i∈I of T (st) and for any (non-internal)
action a with st(a) = [out1, out2] → [in1, in2] we require:

If there is a group of components G = {Aj | j ∈ J ⊆ I } having
a as an input action such that

• a is enabled in each local state qj with j ∈ J and
• in1 ≤ |G| ≤ in2

then there exists a group of components H = {Ak | k ∈ K ⊆ I }
having a as an output action such that

• a is enabled in each local state qk with k ∈ K and
• out1 ≤ |H| ≤ out2.

Hence, the team T (st) can perform a transition

(qi)i∈I
(K ,a,J)−−−−−−→ (q′i)i∈I

71 / 89

Responsiveness: Generalized Version

Idea:

If there is a choice of enabled input actions a1, . . . , an, it is
sufficient if one of them is served.

Example with synchronization types
st(start) = 1 → 2 and st(finish) = 1 → 1

0

1

2

start? run

finish!

Runner1

0

1

2

3

start? run

fail!

Runner ′2

0

2

1
start!

finish?
fail?

finish?
fail?

Controller ′

In state (2, 3, 2) the controller has an input selection between
finish and fail . Only for finish an input can be delivered (by the
first runner) and this is fine.

72 / 89

Communication-Safety

A team automaton T (st) is communication-safe if it is receptive
and responsive in all its reachable states.

This means, whenever a group of components in the team issues a
request for communication it can successfully find partners in the
team to join.

If partners can join only after execution of some intermediate
actions the team T (st) is weakly receptive (weakly responsive
respectively).

Example:

The runners/controller team is receptive and weakly responsive.

73 / 89

Specifications of Team Behaviour

Up to now there were given

• a set of component automata Ai (i ∈ I), and

• a synchronisation type spec. st (for the non-internal actions).

From this we have generated the team automaton T (st).

Now: We propose a top-down approach where first the desired
behaviour of a team is specified (requirements specification) and
only afterwards the component automata are designed to meet the
requirements.

Example:

• No runner should begin running before she has been started
by the controller.

• For any started runner it should be possible to finish her run.

74 / 89

Specifications of Team Behaviour

Up to now there were given

• a set of component automata Ai (i ∈ I), and

• a synchronisation type spec. st (for the non-internal actions).

From this we have generated the team automaton T (st).

Now: We propose a top-down approach where first the desired
behaviour of a team is specified (requirements specification) and
only afterwards the component automata are designed to meet the
requirements.

Example:

• No runner should begin running before she has been started
by the controller.

• For any started runner it should be possible to finish her run.

75 / 89

Formal Requirements Specification with Dynamic Logic

We assume given:

• a finite set I of component names,

• for each i ∈ I , disjoint finite sets of actions Σi ,inp,Σi ,out ,Σi ,int

(to be supported by component i),

• a synchronisation type spec. st (for the non-internal actions).

Atomic team actions have the form (outs, a, ins) where

• either: outs = {i}, i ∈ I , ins = ∅ and a ∈ Σi ,int ,

• or: outs, ins ⊆ I , outs ∩ ins ̸= ∅, and

for all i ∈ outs: a ∈ Σi ,out ,
for all i ∈ ins: a ∈ Σi ,in, and

if st(a) = [out1, out2] → [in1, in2] then
out1 ≤ |outs| ≤ out2, in1 ≤ |ins| ≤ out2.

76 / 89

Formal Requirements Specification with Dynamic Logic

We assume given:

• a finite set I of component names,

• for each i ∈ I , disjoint finite sets of actions Σi ,inp,Σi ,out ,Σi ,int

(to be supported by component i),

• a synchronisation type spec. st (for the non-internal actions).

Atomic team actions have the form (outs, a, ins) where

• either: outs = {i}, i ∈ I , ins = ∅ and a ∈ Σi ,int ,

• or: outs, ins ⊆ I , outs ∩ ins ̸= ∅, and

for all i ∈ outs: a ∈ Σi ,out ,
for all i ∈ ins: a ∈ Σi ,in, and

if st(a) = [out1, out2] → [in1, in2] then
out1 ≤ |outs| ≤ out2, in1 ≤ |ins| ≤ out2.

77 / 89

Example

I = {Runner1,Runner2,Controller},

ΣRunner1,inp = ΣRunner2,inp = {start} = ΣController,out

ΣRunner1,out = ΣRunner2,out = {finish} = ΣController,inp

ΣRunner1,int = ΣRunner2,int = {run}

ΣController,int = ∅

Synchronization types:

st(start) = 1 → 2, st(finish) = 1 → 1

Atomic team actions:

({Controller}, start, {Runner1,Runner2}),
({Runner1}, finish, {Controller}), ({Runner2}, finish, {Controller}),
({Runner1}, run, ∅), ({Runner2}, run, ∅)

78 / 89

Composed Actions

Composed actions are defined by the grammar

α ::= atomic action | α;α | α+ α | α∗

e.g. sequential composition:
(Controller, start, {Runner1,Runner2}) ; (Runner1, run, ∅)

non-deterministic choice:
(Runner1, run, ∅) + (Runner2, finish,Controller)

iteration:
(some∗; (Runner2, finish,Controller))∗

Abbreviations:
Let A = {a1, . . . , an} be the (finite) set of atomic team actions.

some stands for a1 + . . .+ an and, for j ∈ {1, . . . , n},
−aj stands for a1 + . . .+ aj−1 + aj+1 + . . .+ an.

79 / 89

Dynamic Logic Formulas

Formulas: φ ::= true | ¬φ | φ ∨ φ | ⟨α⟩φ

⟨α⟩φ expresses “in the current state it is possible to execute action
α and after that φ holds”

Usual abbreviations: false = ¬true, φ1 ⇒ φ2 = ¬φ1 ∨ φ2 and

[α]φ = ¬⟨α⟩¬φ expresses “whenever α is executed in the current
state then φ holds in the subsequent state”

e.g. a safety property is expressed by: [some∗]φ

a liveness property would be: [some∗; a]⟨b⟩true

a forbidden behaviour would be: [some∗; a; some∗; b]false

deadlock-freeness would be: [some∗]⟨some⟩true

80 / 89

Dynamic Logic Formulas

Formulas: φ ::= true | ¬φ | φ ∨ φ | ⟨α⟩φ

⟨α⟩φ expresses “in the current state it is possible to execute action
α and after that φ holds”

Usual abbreviations: false = ¬true, φ1 ⇒ φ2 = ¬φ1 ∨ φ2 and

[α]φ = ¬⟨α⟩¬φ expresses “whenever α is executed in the current
state then φ holds in the subsequent state”

e.g. a safety property is expressed by: [some∗]φ

a liveness property would be: [some∗; a]⟨b⟩true

a forbidden behaviour would be: [some∗; a; some∗; b]false

deadlock-freeness would be: [some∗]⟨some⟩true

81 / 89

Example: Formal Requirements Specification

• No runner should begin running before she has been started
by the controller:

[(−(Controller, start, {Runner1,Runner2}))∗ ;
(Runner1, run, ∅) + (Runner2, run, ∅)]false

• For any started runner it should be possible to finish her run:

[some∗ ; (Controller, start, {Runner1,Runner2})]
(⟨some∗ ; (Runner1, finish,Controller)⟩true∧
⟨(some∗ ; (Runner2, finish,Controller)⟩true)

82 / 89

Example: Formal Requirements Specification

• No runner should begin running before she has been started
by the controller:

[(−(Controller, start, {Runner1,Runner2}))∗ ;
(Runner1, run, ∅) + (Runner2, run, ∅)]false

• For any started runner it should be possible to finish her run:

[some∗ ; (Controller, start, {Runner1,Runner2})]
(⟨some∗ ; (Runner1, finish,Controller)⟩true∧
⟨(some∗ ; (Runner2, finish,Controller)⟩true)

83 / 89

Semantics: Satisfaction of Dynamic Logic Formulas

We define T , q |= φ for

- a team automaton T = T (st) generated over st,
- a system (team) state q = (qi)i∈I , and
- a dynamic logic formula φ.

• T , q |= true,

• T , q |= ¬φ if not T (st), q |= φ,

• T , q |= φ1 ∨ φ2 if T , q |= φ1 or T , q |= φ2,

• T , q |= ⟨α⟩φ if there exists a team state q′ and such that
q

α−→ q′ and T , q′ |= φ,

T satisfies a formula φ, denoted by T |= φ,
if T , q0 |= φ where q0 = (q0i)i∈I is the initial system state.

T is a correct realization of a requirements specification
{φ1, . . . , φm}, if T |= φj for all j ∈ {1, . . . ,m}.

84 / 89

Semantics: Satisfaction of Dynamic Logic Formulas

We define T , q |= φ for

- a team automaton T = T (st) generated over st,
- a system (team) state q = (qi)i∈I , and
- a dynamic logic formula φ.

• T , q |= true,

• T , q |= ¬φ if not T (st), q |= φ,

• T , q |= φ1 ∨ φ2 if T , q |= φ1 or T , q |= φ2,

• T , q |= ⟨α⟩φ if there exists a team state q′ and such that
q

α−→ q′ and T , q′ |= φ,

T satisfies a formula φ, denoted by T |= φ,
if T , q0 |= φ where q0 = (q0i)i∈I is the initial system state.

T is a correct realization of a requirements specification
{φ1, . . . , φm}, if T |= φj for all j ∈ {1, . . . ,m}.

85 / 89

Semantics: Satisfaction of Dynamic Logic Formulas

We define T , q |= φ for

- a team automaton T = T (st) generated over st,
- a system (team) state q = (qi)i∈I , and
- a dynamic logic formula φ.

• T , q |= true,

• T , q |= ¬φ if not T (st), q |= φ,

• T , q |= φ1 ∨ φ2 if T , q |= φ1 or T , q |= φ2,

• T , q |= ⟨α⟩φ if there exists a team state q′ and such that
q

α−→ q′ and T , q′ |= φ,

T satisfies a formula φ, denoted by T |= φ,
if T , q0 |= φ where q0 = (q0i)i∈I is the initial system state.

T is a correct realization of a requirements specification
{φ1, . . . , φm}, if T |= φj for all j ∈ {1, . . . ,m}.

86 / 89

State Transitions for Composed Actions

Definition of q
α−→ q′ by structural induction on the form of α:

for α = (outs, a, ins): q
α−→ q′ is the team transition defined earlier,

for α = α1;α2: q
α−→ q′ holds if there are q

α1−→ q̂ and q̂
α2−→ q′,

for α = α1 + α2: q
α−→ q′ holds if there is q

α1−→ q′ or q
α2−→ q′,

for α = (α1)
∗: q

α−→ q′ holds if q = q′ or if there are q
(α1)∗−−−→ q̂ and

q̂
α1−→ q′.

87 / 89

Conclusion

• Investigation of compatibility notions for various
synchronization types.

• A team automaton is a correct realization of a dynamic logic
specification, if it satisfies all its formulas.

• Further steps:

– composition of teams,

– asynchronous communication,

– tool support,

– team automata with variable instantiations (featured team
automata) for product lines of component systems
[ter Beek, Cledou, Hennicker, Proença 2021]

88 / 89

Some Literature

M. H. ter Beek, C. A. Ellis, J. Kleijn, and G. Rozenberg:
Synchronizations in Team Automata for Groupware Systems. Comput.
Sup. Coop. Work 12(1), pages 21-69, 2003.

M. H. ter Beek, R. Hennicker, J. Kleijn: Compositionality of Safe
Communication in Systems of Team Automata. In Proc. Int. Coll. Theor.
Aspects of Computing (ICTAC’20), volume 12545 of Lecture Notes in
Computer Science, pages 200-220, Springer, 2020.

M. H. ter Beek, G. Cledou, R. Hennicker, and J. Proença: Featured

Team Automata. In Proc. Formal Methods - 24th International

Symposium (FM’21), volume 13047 of Lecture Notes in Computer

Science, pages 483-502, Springer, 2021.

89 / 89

