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Abstract. We propose featured team automata to support variability
in the development and analysis of teams, which are systems of reac-
tive components that communicate according to speci�ed synchronisa-
tion types. A featured team automaton concisely describes a family of
concrete product models for speci�c con�gurations determined by feature
selection. We focus on the analysis of communication-safety properties,
but doing so product-wise quickly becomes impractical. Therefore, we
investigate how to lift notions of receptiveness (no message loss) to the
level of family models. We show that featured (weak) receptiveness of fea-
tured team automata characterises (weak) receptiveness for all product
instantiations. A prototypical tool supports the developed theory.

1 Introduction

Team automata, originally introduced in the context of computer supported co-
operative work to model groupware systems [25], are formalised as a theoretical
framework to study synchronisation mechanisms in system models [8]. Team au-
tomata represent an extension of I/O automata [11]. Their distinguishing feature
is the loose nature of synchronisation according to which, in principle, any num-
ber of component automata can participate in the synchronised execution of a
shared communicating action, either as a sender or as a receiver. Team automata
can determine speci�c synchronisation policies de�ning when and which actions
are executed and by how many components. Synchronisation types classify the
policies realisable in team automata (e.g., peer-to-peer or broadcast communica-
tion) in terms of ranges for the number of sender and receiver components that
can participate in a synchronisation [6]. In extended team automata (ETA) [10],
synchronisation type speci�cations (STS) individually assign a synchronisation
type to each communicating action. Such a speci�cation uniquely determines a
team and gives rise to communication requirements to be satis�ed by the team.

For systems composed by components communicating via message exchange,
it is desirable to guarantee absence of communication failures, like message loss
(typically output not received as input, violating receptiveness) or inde�nite
waiting (typically for input that never arrives, violating responsiveness). This
requires knowledge of the synchronisation policies to establish the compatibility
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of communicating components [22,14,29]; for team automata this was �rst stud-
ied for full synchronous products of component automata in [15]. Subsequently,
a generic procedure to derive requirements for receptiveness and responsive-
ness for each synchronisation type was de�ned, and communication-safety of
(extended) team automata was expressed in terms of compliance with such re-
quirements [6,10]. A team automaton is called compliant with a given set of
communication requirements if in each reachable state the requirements are met
(i.e. the communication is safe). If the required communication cannot occur im-
mediately, but only after some arbitrary other actions have been executed, the
team automaton is called weakly compliant (akin to weak compatibility [5,28]
or agreement of lazy request actions [3]).

Many of today's software systems are highly con�gurable, variant-rich sys-
tems, developed as a software product line (SPL) with a notion of variability in
terms of features that conceptualise pieces of system functionality or aspects that
are relevant to the stakeholders [1]. Formal models of SPL behaviour are stud-
ied extensively. Such variability-rich behavioural models are often based on the
superimposition of multiple product models in a single family model, equipped
with feature-based variability such that each product model corresponds to a
di�erent con�guration. Arguably the best known models are featured transition
systems (fTSs) [20,18,19] and modal transition systems [27,26], possibly with
variability constraints [2,9], but also I/O automata [29,30], Petri nets [34,33] and
contract automata [4,3] have been equipped with variability. An fTS is a labelled
transition system (LTS) whose transitions are annotated with feature expres-
sions that are Boolean expressions over features, which condition the presence of
transitions in product models, and a feature model, which determines the set of
valid product models (con�gurations) of the family model. The analysis of family
models is challenging due to their innate variability, since the number of possi-
ble product models may be exponential in the number of features. In particular
for larger models, enumerative product-by-product analysis becomes unfeasible;
thus, dedicated family-based analysis techniques and tools, which exploit vari-
ability in terms of features, have been developed [20,21,37,36,24,13,17,16,12,23].

Motivation fTSs have mostly been studied in the context of families of con-
�gurable components. Less attention has been paid on their parallel execution,
in particular in the context of systems of reactive, concurrently running compo-
nents, where interaction is a crucial issue, often realised by message exchange.
For this, we need i) to discriminate between senders and receivers and thus be-
tween input and output actions in fTSs, and ii) a �exible synchronisation mech-
anism, not necessarily peer-to-peer, for sets of fTSs, called (featured) systems.
In particular, the type of synchronisation should remain variable, depending
on selected features (products). Important questions for analysis of such sys-
tems concern behavioural compatibility (communication-safety). As mentioned
above, compositionality and communication-safety have been studied extensively
in the literature for a variety of formal (automata-based) models, but�to the
best of our knowledge�not considering variability. Thus, we need a means to
de�ne and verify communication-safety for systems of fTSs, ideally performing
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analyses on the level of featured systems such that the respective properties are
automatically guaranteed for any product instantiation. In this paper, we focus
on the property of (weak) receptiveness.

Running Example We consider a con�gurable access management system con-
sisting of a server and users who can either login with secure authentication or
without (open access). Concrete automata capturing user and server behaviour
are speci�ed as family models whose product models correspond to con�gura-
tions with or without secure authentication.

Fig. 1 shows two fTSs: a family model of user components (Fig. 1a) and a
family model of server components (Fig. 1b), as well as a feature model fm =
µ⊕b. The feature model expresses an exclusive choice of two features, µ and
b, representing access with or without secure authentication, respectively, and
de�nes two valid products (sets of features): {µ} and {b}. The idea is that
the server must con�rm login access only for secure authentication. Thus, each
transition is annotated with a constraint, denoted by a feature expression in
square brackets (e.g., [µ]), to indicate the product(s) that allow this transition.

A user starts in the initial state 0, indicated by the incoming arrow, in which
only the action join! can be executed. Depending on the speci�c product, this
results in a move to state 1 (if feature µ is present) or to state 2 (if b is present).
From state 2, a user can move back to state 0 by executing action leave!, in either
product, as enabled by the transition constraint [>] (denoting truth value true).
In state 1, which is only present for the product with secure authentication, the
user waits for explicit con�rmation of login access from the server.

Figs. 2a and 2c show the LTSs representing the user product models, which
result from projecting the user fTS in Fig. 1a onto its set of valid products.
Similarly, Figs. 2b and 2d show the LTSs of the server product models, projecting
the server fTS onto its two valid products.

0 2

1
[µ] join!

[b] join!

[µ] confirm?

[>] leave!

fm = µ⊕ b

(a) User

0 1[b] join? [>] leave?

[µ] join?

[µ] confirm!

(b) Server

Fig. 1: Family models of users U and servers S and a shared feature model fm

0 2

1
join! confirm?

leave!

(a) U�µ

0 1leave?

join?

confirm!

(b) S�µ

0 2
join!

leave!

(c) U�b

0

join?

leave?

(d) S�b

Fig. 2: Product models of users and servers (projections of the models in Fig. 1)
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Components (�3.1) Systems (�3.1) Teams (�3.2, Thm. 1) Receptiveness (�4)

Previous
work [10]:

Current
paper: A : fCA S=(Ai)i∈N : fSys

A�p :CA S�p=(Ai�p)i∈N :Sys

fETA× fReqs

ETA×Reqs

featured
(weakly)
receptive

(weakly)
receptive

Thm. 2

fst:fSTS

st:STS

�p �p �p�p

Fig. 3: Overview of this paper, using a valid product p

Contribution Fig. 3 illustrates the contents and contributions of this paper,
which we now explain and relate to the literature mentioned above. In particular,
we extend [10], by enriching ETA with variability, proposing a new model called
featured ETA (fETA) to allow the speci�cation of�and reasoning on�a family
of ETA parameterised by a set of features. We de�ne projections �p (for any valid
product p) to relate the featured setting of this paper to that without in [10].

First, we extend component automata (CA), the building blocks of (extended)
team automata, with variability, resulting in fTSs with input and output actions,
called featured CA (fCA). Basically, CA are LTSs that distinguish between in-
put and output actions (and internal actions, omitted in this paper) and which
capture the behaviour of a component. The fTSs in the running example are
fCA in which input and output actions are appended by ! and ?, respectively.
Multiple CA can run in parallel to form a system (Sys in Fig. 3) of the CA; we
propose a featured system (fSys) to consist of fCA instead of CA.

Given a system and a synchronisation type speci�cation (STS), it is possible
to generate an ETA and derive receptiveness requirements (Reqs), and study
whether the ETA is (weakly) compliant with all such Reqs, in which case it
is called (weakly) receptive. An ETA is an LTS that restricts how CA in the
system can communicate based on the STS. We propose a featured STS (fSTS)
to parameterise an STS with variability, giving rise to the aforementioned fETA
and featured Reqs (fReqs). If the fETA is featured (weakly) compliant with all
such fReqs, it is called featured (weakly) receptive.

While the extension from CA to fCA (and from systems to featured systems)
is rather straightforward, fETA are not simple extensions of ETA: the fSTSs
giving rise to fETA are a nontrivial extension of the STSs for ETA, partially due
to the variability in synchronisation types. Our �rst result (Theorem 1) con�rms
the soundness of our extension. Our main result (Theorem 2) is that featured
(weak) receptiveness induces and re�ects (weak) receptiveness of product models,
i.e. a fETA is featured (weakly) receptive if and only if all ETA obtained by
product projections are (weakly) receptive.

Outline Section 2 provides some basic de�nitions concerning variability. Sec-
tion 3 lifts the theory of team automata to that of featured team automata,
and Section 4 does the same for receptiveness requirements and compliance. We
present a prototypical implementation of the developed theory in Section 5, and
Section 6 concludes the paper and provides some ideas for future work. The
proofs of our results can be found in Appendix A.
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2 Variability

This section provides de�nitions of the basic notions concerning variability, viz.
features, feature expressions, feature models, and fTSs.

A feature, ranged over by f , is regarded as a Boolean variable that represents
a unit of variability. This paper assumes a �nite set of features F . A product,
ranged over by p ⊆ F , is a �nite subset of selected features. In the context of
SPLs, a product can be interpreted as a con�guration used to derive concrete
software systems. A feature expression ψ over a set of features F , denoted ψ ∈
FE (F ), is a Boolean expression over features with the usual Boolean connectives
and constants > and ⊥ interpreted by the truth values true and false. A product
p satis�es a feature expression ψ, denoted p |= ψ, if and only if ψ is evaluated
to > if > is assigned to every feature in p and ⊥ to the features not in p. A
feature expression ψ is satis�able if there exists a product p such that p |= ψ.
A feature model fm ∈ FE (F ) is a feature expression that determines the set of
products for which concrete systems of an SPL can be derived. We use JfmK to
denote the set of products that satisfy the feature model fm ∈ FE (F ).

Notation. For any product p ⊆ F , its view as a feature expression is χp =∧
f∈p f ∧

∧
f∈F\p ¬f . p is the unique product with p |= χ

p. A set P of products

is characterised by the feature expression χP =
∨
p∈P

χ
p. Clearly, for any product

p, p ∈ P i� p |= χ
P . Note that the conjunctions and disjunctions are �nite, since

F is �nite. Moreover,
∧
i∈∅ ψi stands for > and

∨
i∈∅ ψi stands for ⊥.

A featured transition system (fTS) is a tuple A=(Q, I,Σ,E, F, fm, γ) such
that (Q, I,Σ,E) is an LTS with a �nite set of states Q, a set of initial states
I ⊆ Q, a �nite set of actions Σ, and a transition relation E ⊆ Q × Σ × Q. F
is a �nite set of features, fm ∈ FE (F ) is a feature model and γ : E → FE (F )
is a mapping assigning feature expressions to transitions. A product p ⊆ F is
valid for the feature model fm, if p ∈ JfmK. The mapping γ expresses transition
constraints for the realisation of transitions. A transition t ∈ E is realisable for
a valid product p if p |= γ(t).

An fTS A can be projected to a valid product p by using γ to �lter realisable
transitions, resulting in the LTS A�p = (Q, I,Σ,E�p), where E�p = {t ∈ E | p |=
γ(t)}. Such a projection is also called product model or con�guration. Hereafter,
we will generally write projections using superscripts, e.g. Ap to denote A�p.

Notation. Given an LTS or an fTS A, we write q
a−→A q′, or shortly q

a−→ q′,

to denote (q, a, q′) ∈ E. For Γ ⊆ Σ, we write q
Γ−→∗ q′ if there exist q a1−→ q1

a2−→
· · · an−−→ q′ for some n ≥ 0 and a1, . . . , an ∈ Γ . An action a is enabled in A at
state q ∈ Q, denoted a enA@q, if there exists q′ ∈ Q such that q

a−→ q′. A state

q ∈ Q is reachable if q0
Σ−→∗ q for some q0 ∈ I.

3 Team Automata with Variability

This section proposes to integrate variability in the modelling of teams of reactive
components which communicate according to speci�ed synchronisation policies.
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For this purpose we de�ne featured CA, featured systems, and featured ETA, and
compare them to their featureless counterparts. Throughout this section we will
use grey backgrounds to highlight extensions with features.

3.1 Featured Component Automata and Featured Systems

A featured component automaton (fCA) is an fTS A = (Q, I,Σ,E, F , fm , γ )

such that Σ = Σ? ] Σ! consists of disjoint sets Σ? of input actions and Σ!

of output actions. For simplicity, we do not consider internal actions here. For
easier readability, input actions will be shown with su�x �?� and output actions
with su�x �!�. fCA extend component automata (CA) [8,10] with features and
feature models. The running example in Section 1 contains examples of fCA.

A featured system (fSys) is a pair S = (N , (Ai)i∈N ), where N is a �nite,
nonempty set of component names and (Ai)i∈N is an N -indexed family of fCA
Ai = (Qi, Ii, Σi, Ei, F , fm , γi ) over a shared set of features F and feature

model fm . Composition of feature models is out of the scope of this paper, but
note that multiple approaches exist in the literature, e.g., using conjunction or
disjunction of feature models [35,18,19].

Featured systems extend systems of CA [10] by using fCA instead of CA as
system components. An fSys S = (N , (Ai)i∈N ) induces: the set of system states
Q =

∏
i∈N Qi such that, for any q ∈ Q and for all i ∈ N , qi ∈ Qi; the set of

initial states I =
∏
i∈N Ii; the set of system actions Σ =

⋃
i∈N Σi; the set of

system labels Λ ⊆ 2N × Σ × 2N de�ned as Λ = {(S, a,R) | ∅ 6= S ∪ R ⊆ N ,
∀i∈S · a ∈ Σ!

i,∀i∈R · a ∈ Σ?
i }; and the set of system transitions E ⊆ Q× Λ×Q

de�ned as E = {q (S,a,R)−−−−−→ q′ | ∀i∈(S∪R) · qi
a−→Ai

q′i, ∀j∈N\(S∪R) · qj = q′j}.
A transition labelled by a system label denotes the atomic execution of an

action a by a set of components in which a is enabled. More concretely, for a
system label (S, a,R) ∈ Λ, S represents the set of senders and R the set of
receivers that synchronise on an action a ∈ Σ. Since, by de�nition of system
labels, S ∪R 6= ∅, at least one component participates in any system transition.
The transitions of a system capture all possible synchronisations of shared ac-
tions of its components, even when only one component participates. Given a

system transition t = q
(S,a,R)−−−−−→ q′, we write t.a for a, t.S for S and t.R for R.

For ease of presentation, we assume in this paper that systems are closed. This
means that any system action a ∈ Σ occurs in (at least) one of its components
as an input action and in (at least) one of its components as an output action.

The projection of an fSys S = (N , (Ai)i∈N ) to a product p ∈ JfmK is the
system Sp = (N , (Api )i∈N ).

Example 1. We consider an fSys S@ with three components, two users and one
server following the running example in Section 1. Formally, S@ = (N , (Ai)i∈N ),
where N = {u1, u2, s} are component names, Au1

, Au2
are copies of the fCA U

in Fig. 1a, and As is a copy of the fCA S in Fig. 1b.
The system states are tuples (p, q, r) with user states p ∈ Qu1

and q ∈ Qu2
,

and server state r ∈ Qs. S@ has an initial state (0, 0, 0), a total of 18 states (3×
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2, 2, 0 0, 2, 02, 0, 0

0, 0, 0

{u2}, leave, {s}
{u2}, leave, {}

{u1}, leave, {s}
{u1}, leave, {}

{u1, u2}, leave, {s} {u1, u2}, leave, {}

{}, leave, {s}

Fig. 4: Some system transitions of S@

3× 2), actions Σ = {join, leave, confirm}, and a total of 142 system transitions.
Some of these (with action leave) are depicted in Fig. 4; the transitions marked in
grey will be discarded based on synchronisation restrictions in the next section.

The projection of S@ to the valid product {µ}, respecting the shared feature
model µ⊕b, is the system Sµ

@ = (N , {Aµ
u1
, Aµ

u2
, Aµ

s}), such that Aµ
u1
, Aµ

u2
are

copies of U�µ in Fig. 2a and Aµ
s is a copy of S�µ in Fig. 2b. Similarly, for product

{b}, we get the projected system Sb

@ = (N , {Ab
u1
, Ab

u2
, Ab

s}). B

3.2 Featured Team Automata

Featured team automata (fETA) are the key concept to model families of teams.
They are constructed over an fSys S together with a speci�cation of synchroni-
sation types expressing desirable synchronisation constraints. This section �rst
formalises the latter and then fETA as fTSs.

A synchronisation type (s, r)∈ Intv×Intv is a pair of intervals s and r which de-
termine the number of senders and receivers that can participate in a communica-
tion. Each interval is written [min,max ], with min∈N and max ∈N∪{∗}. We use
∗ to denote 0 or more participants, and write x ∈ [n,m] if n≤x ≤m and x ∈ [n, ∗]
if x ≥ n. For a system transition t, we de�ne t |= (s, r) if |t.S| ∈ s ∧ |t.R| ∈ r.

A featured synchronisation type speci�cation (fSTS) over an fSys S, is a
total function, fst : JfmK × Σ → Intv× Intv, mapping each product p ∈ JfmK
and action a ∈ Σ to a synchronisation type. Thus, an fSTS is parameterised by
(valid) products and therefore supports variability of synchronisation conditions.

fSTSs are extensions of synchronisation type speci�cations (STSs) in [10]; an
STS st : Σ → Intv × Intv maps actions to bounds of senders and receivers. For
any product p ∈ JfmK, an fSTS fst can be projected to an STS fst

p such that
fst

p(a) = fst(p, a) for all a ∈ Σ.

Example 2. The de�nition of fst@ corresponds to an fSTS for the fSys S@ in
Example 1:

fst@(p, confirm) = ([1, 1], [1, 1]) for p ∈ {{µ}, {b}} (1)

fst@({µ}, a) = ([1, 1], [1, 1]) for a ∈ {join, leave} (2)

fst@({b}, a) = ([1, ∗], [1, 1]) for a ∈ {join, leave} (3)

Intuitively, independently of the selected product, users can receive con�rmation
from the server in a one-to-one fashion (1). If secure authentication µ is required,
one user can join/leave by synchronising exclusively with one server (2). If open
access b is required, multiple users can join/leave at the same time (3). B
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Given an fSys S = (N , (Ai)i∈N ) and an fSTS fst over S, the featured team
automaton (fETA) generated by S and fst, written fst[S], is the fTS (Q, I,Σ,
E, F , fm , γ ) where Q, I,Σ,E, F , and fm are determined by S. It remains
to construct the mapping γ : E → FE (F ), which constrains system transitions
by feature expressions. The de�nition of γ is derived from both the transition
constraints γi of every Ai and from fst. It is motivated by the fact that a system

transition t = q
(S,a,R)−−−−−→ q′ ∈ E should be realisable for those products p ∈ JfmK

for which both of the following conditions hold:

1. In each component Ai, with i ∈ (S ∪ R), the local transition qi
a−→Ai q

′
i is

realisable for p. This means p |= γ̂(t), where γ̂(t) =
∧
i∈(S∪R) γi(qi

a−→Ai q
′
i).

2. For any action a ∈ Σ, the number of senders |S| and receivers |R| �ts
the synchronisation type fst(p, a). This means p |= χ

P (fst,t), where χP (fst,t)

(cf. Section 2) is the feature expression characterising the set of products
P (fst, t) = {p ∈ JfmK | t |= fst(p, t.a)}.

In summary, for any t = q
(S,a,R)−−−−−→ q′ ∈ E, we de�ne γ(t) = γ̂(t) ∧ χP (fst,t). Note

that, since P (fst, t) is a subset of JfmK, it holds |= χ
P (fst,t) → fm and hence

|= γ(t) → fm. In cases where P (fst, t) = JfmK, χP (fst,t) and fm are equivalent
and then we will often use γ(t) = γ̂(t) ∧ fm.

Recall that an fTS can be projected to products (as de�ned in Section 2) and
therefore also the fETA fst[S] can be projected to a valid product p ∈ JfmK yield-
ing the LTS fst[S]p. Thus any fETA fst[S] speci�es a family of product models.

Example 3. Consider the fSys S@ and the fSTS fst@ from Example 2, here and in
the following examples simply called fst, as well as the generated fETA fst[S@].
There are many system transitions, for instance

t1 = (0, 0, 0)
({u1 ,u2}, join,{s})−−−−−−−−−−−−→ (2, 2, 0) and

t2 = (0, 0, 0)
({u1,u2}, join,{s})−−−−−−−−−−−−→ (1, 1, 1).

For t1, we have γ̂(t1) =
∧
i∈{1,2} γui(0

join−−→Aui
2)∧γs(0

join−−→As 0) = b∧b∧b.

Since {b} is the only valid product p such that t1 |= fst(p, join) = ([1, ∗], [1, 1])�
note that only for open access more than one user can join simultaneously�
we have χP (fst,t1) = b ∧ ¬µ (where P (fst, t1) = {{b}}). Thus, in summary,
γ(t1) = (b ∧b ∧b) ∧ (b ∧ ¬µ). Hence t1 can only be realised for open access.

For t2, we have γ̂(t2) = µ ∧ µ ∧ µ and χP (fst,t2) = b ∧ ¬µ as before, since
{b} is the only product p such that t2 |= fst(p, join). Therefore, γ(t2) = (µ ∧
µ∧µ)∧ (b∧¬µ), which reduces to ⊥ and thus is not realisable by any product.

Fig. 5 shows the full generated fETA fst[S@], after removing all unreachable
states and all non-realisable transitions t, i.e. ∀p∈JfmK · p 6|= γ(t). For each transi-
tion t in Fig. 5 we present γ(t) as a conjunction of (a semantics-preserving sim-
pli�cation of) γ̂(t) and an underlined χP (fst,t) or fm = µ⊕b if P (fst, t) = JfmK.
The latter is the case in all transitions in which only one user participates. If two
users join or leave simultaneously, then χP (fst,t) is always b ∧¬µ as explained
above for t1. (Further reductions are possible for the conjoined γ(t).) B
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0, 0, 0 0, 2, 0

0, 1, 1

2, 0, 0 2, 2, 0

2, 1, 1

1, 2, 11, 0, 1

[b ∧ fm] {u2}, join, {s}

[µ ∧ fm] {u2}, join, {s}

[µ ∧ fm]
{u1}, join, {s}

[b
∧

fm
]

{
u
1 }
,jo

in
,{
s}

[b ∧
b ∧ ¬ µ]

{u
1 , u

2}, join, {s}

[µ ∧ fm] {s}, confirm, {u2}

[> ∧ fm] {u2}, leave, {s}
[µ ∧ fm]

{u1}, join, {s}

[b
∧

fm
]

{
u
1 }
,jo

in
,{
s}

[µ ∧ fm]
{s}, confirm, {u1}

[> ∧ fm] {u2}, leave, {s}

[b ∧ fm] {u2}, join, {s}

[>
∧

fm
]

{u
1
},

le
a

ve
,{
s}

[µ ∧ fm]
{u2}, join, {s}

[> ∧
b ∧ ¬ µ]

{u
1 , u

2}, leave, {s}

[>
∧

fm
]

{u
1
},

le
a

ve
,{
s}

[µ ∧ fm]
{s}, confirm, {u1}

[µ ∧ fm]
{s}, confirm, {u2}

fm = µ⊕ b

Fig. 5: Generated fETA fst@[S@]

3.3 fETA versus ETA

fETA are not simple extensions of extended team automata (ETA) introduced
in [10]. An ETA is an LTS st[S] generated over a system S of CA by an STS
st that explicitly �lters the system transitions that satisfy the synchronisation
types determined by st. Concretely, an ETA st[S] is the LTS (Q, I,Σ, st[E]),
where Q, I,Σ, and E are induced by S, and st[E] = {t ∈ E | t |= st(t.a)}.

Observe that an STS thus restricts the set of system transitions of a system
S, such that the ETA st[S] has only a subset of the transitions of S. Instead, an
fSTS and the local transition constraints of the components Ai impose transition
constraints γ on the system transitions of an fSys S such that the fETA fst[S]
has all transitions of S, but appropriately constrained such that many of them
will not be realisable anymore for concrete products.

The next theorem shows that, for any valid product p, the projection onto p
of the fETA fst[S], generated over the fSys S by the fSTS fst, is the same as the
ETA over the projected system Sp generated by the projected STS fst

p. This
result justi�es the soundness of the de�nition of a generated fETA, in particular
of its transition constraint γ. It also shows that the diagram in Fig. 3 commutes.

Theorem 1. Let S be an fSys with feature model fm, let fst be an fSTS, and
let p ∈ JfmK be a valid product. Then:

fst[S]p = fst
p[Sp].

4 Receptiveness

As explained in Section 3 and formalised in Theorem 1, a fETA fst[S] can be pro-
jected to a product p∈JfmK, thus yielding an ETA (i.e. a team) fst[S]p= fst

p[Sp].
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Any such ETA describes the behaviour of a concrete system Sp whose compo-
nents (the team members) are coordinated by the synchronisation type speci�-
cation st= fst

p. This section analyses communication-safety of such families of
ETA. Our aim is to provide criteria on the level of fETA that guarantee commu-
nication-safety properties for all ETA obtained by projection (cf. Section 4.3).

4.1 Receptiveness for ETA

We focus on the property of receptiveness, which has been studied before in the
literature [22,14,29], mainly in the context of peer-to-peer communication. An
extension to multi-component communications was studied in [15] and in [10],
where also a notion of responsiveness not considered here was introduced. The
idea of receptiveness is as follows: whenever, in a reachable state q of an ETA
st[S], a group of components J is (locally) enabled to perform an output action a
such that its synchronous execution is in accordance with the synchronisation
type st(a), we get a receptiveness requirement, written as rcp(J, a)@q. The ETA
is compliant with this requirement if J can �nd partners in the team which syn-
chronise with the components in J by taking (receiving) a as input. If reception
is immediate, we talk about receptiveness; if the other components �rst perform
some intermediate actions before accepting a, we talk about weak receptiveness.

Formally, receptiveness requirements, compliance, and receptiveness are de-
�ned as follows and illustrated in Example 4. We assume a given ETA st[S] = (Q,
I,Σ, st[E]) generated by the STS st over a system S = (N , (Ai)i∈N ) of CA Ai.

A receptiveness requirement (Req) is an expression rcp(J, a)@q, where q ∈ Q
is a reachable state of st[S], a ∈ Σ is an action, and ∅ 6= J ⊆ N is a set of
component names such that ∀j∈J · a ∈ Σ!

j ∧ a enAj@qj and st(a) = (s, r) ⇒
|J | ∈ s ∧ 0 /∈ r. The last condition requires that i) the number of components
in J �ts the number of allowed senders according to the synchronisation type
of a, and ii) at least one receiver must exist according to the synchronisation
type of a.5 Hence our subsequent compliance and receptiveness notions, taken
from [10] and formalising the informal explanations above, depend strongly on
the synchronisation types of actions.

The ETA st[S] is compliant with a Req rcp(J, a)@q if the following holds:

∃R 6=∅ and q′∈Q · q
(J,a,R)−−−−→st[S] q

′.

The ETA st[S] is weakly compliant with a Req rcp(J, a)@q if

∃R 6=∅ and q̂,q′∈Q · q
Λ\J−−→∗st[S] q̂

(J,a,R)−−−−→st[S] q
′,

where Λ\J denotes the set of system labels in which no component of J partic-
ipates. Indeed, only when state q̂ is reached, the components of J can actively
get rid of their output.

The ETA st[S] is (weakly) receptive if it is (weakly) compliant with all Reqs
for st[S].
5 Otherwise, the components in J could simply output a without reception.
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Example 4. Let ETA fst
µ[Sµ

@] be generated by the STS fst
µ (i.e. the projection

of fst from Example 3 to {µ}) over the system Sµ

@ = (N , {Aµ
u1
, Aµ

u2
, Aµ

s}) of

Example 1, with fst
µ(join) = fst

µ(confirm) = fst
µ(leave) = ([1, 1], [1, 1]). In the

initial global state (0, 0, 0) both users are enabled to execute output action join,
but not simultaneously. Hence, we get two Reqs rcp({ui}, join)@(0, 0, 0), one
for each i ∈ {1, 2}. The ETA fst

µ[Sµ

@] is compliant with both Reqs because

(0, 0, 0)
({u1},join,{s})−−−−−−−−−−→

fstµ[Sµ
@] (1, 0, 1) and (0, 0, 0)

({u2},join,{s})−−−−−−−−−−→
fstµ[Sµ

@] (0, 1, 1).

Now assume that user Aµ
u1

joins. Then fst
µ[Sµ

@] ends up in state (1, 0, 1), where
user Aµ

u2
may decide to join, i.e. there is a Req rcp({u2}, join)@(1, 0, 1). But

the server is not yet ready for Aµ
u2

as it �rst needs to send a con�rmation to

Aµ
u1
. Therefore fst

µ[Sµ

@] is not compliant with rcp({u2}, join)@(1, 0, 1), but it is

weakly compliant with this Req. We can show that the ETA fst
µ[Sµ

@] is either
compliant or weakly compliant with any Req and therefore it is weakly receptive.

Next, consider ETA fst
b[Sb

@] generated by the STS fst
b over the system Sb

@ =
(N , {Ab

u1
, Ab

u2
, Ab

s}) of Example 1 with fst
b(join) = fst

b(leave) = ([1, ∗], [1, 1]).
In state (0, 0, 0), both users are enabled to output join. Therefore, according to
the sending multiplicity [1, ∗] of fstb(join), there are three Reqs for that state,
among which rcp({u1, u2}, join)@(0, 0, 0). Note that fst

b[Sb

@] is compliant with

this Req due to the team transition (0, 0, 0)
({u1,u2},join,{s})−−−−−−−−−−−−→

fstb[Sb
@] (1, 1, 1). In

fact, the ETA fst
b[Sb

@] is compliant with all Reqs and therefore it is receptive. B

4.2 Featured Receptiveness for fETA

We now turn to fETA and discuss how the notions of receptiveness requirements,
compliance, and receptiveness can be transferred to the feature level. We assume
a given fETA fst[S] = (Q, I,Σ,E, F , fm , γ ) generated by the fSTS fst over
an fSys S = (N , (Ai)i∈N ), with fCA Ai. The crucial di�erence with the case
of ETA is that fETA are based on syntactic speci�cations modelling families of
teams. Hence a Req rcp(J, a)@q formulated for an ETA cannot be formulated
for a fETA as it is. Instead, it must take into account the valid products p of the
family for which the requirement is meaningful. For this purpose, we propose
to complement rcp(J, a)@q by a syntactic application condition, resulting in a
featured receptiveness requirement (fReq), written as [prod(J , a, q)] rcp(J, a)@q.
Herein prod(J, a, q) is a feature expression, which characterises the set of valid
products for which the Req rcp(J, a)@q is applicable for fst[S]p. The expression
prod(J, a, q) = fe(J, a, q) ∧ χP (fst,J,a) ∧ χP (q) consists of the following parts:

1. fe(J, a, q) =
∧
j∈J

∨
γj(qj

a−→Aj
q′j) combines the feature expressions of all

transitions of components Aj (j ∈ J) with action a and starting in the local

state qj . For any fCA Aj , the disjunction
∨
γj(qj

a−→Aj q
′
j) ranges over the

feature expressions of all local transitions of Aj starting in qj and labelled
with a. Hence, if there are more such transitions it is su�cient if one of
them is realised (in a projection of Aj). Thus fe(J, a, q) characterises those
products p for which outgoing transitions with output a are realisable in the
local states qj of Aj and hence enabled in qj in the projected component Apj .
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2. χP (fst,J,a) is the feature expression which characterises (cf. Section 2) the set
P (fst, J, a) = {p ∈ JfmK | fst(p, a)=(s, r) ⇒ |J | ∈ s ∧ 0 /∈ r}. This is the
set of all products p such that fst(p, a) allows |J | as number of senders and
requires at least one receiver.

3. χP (q) is the feature expression which characterises the set P (q) of products
for which state q is reachable by transitions of fst[S] whose constraints are

satis�ed by p, i.e. P (q) = {p ∈ JfmK | ∃q0∈I · q0
l1−→fst[S] q1

l2−→ . . .
ln−→fst[S]

qn = q for some n ≥ 0, and p |= γ(qi−1
li−→fst[S] qi) for i = 1, . . . , n}.

In summary, an fReq for fst[S] has the form [prod(J , a, q)] rcp(J, a)@q, where
q ∈ Q is a reachable state of fst[S], a ∈ Σ, ∅ 6= J ⊆ N is a set of component
names such that ∀j∈J · a ∈ Σ!

j ∧ a enAj@qj , and prod(J, a, q) is a satis�able
feature expression as de�ned above. Note that |= prod(J, a, q) → fm, because
P (fst, J, a) in item 2 (and also P (q) in item 3) is a subset of JfmK.

The following lemma provides a formal relation between Reqs and fReqs.

Lemma 1. For all products p it holds: [prod(J , a, q)] rcp(J, a)@q is an fReq for
fst[S] and p |= prod(J, a, q) i� p ∈ JfmK and rcp(J, a)@q is a Req for fst[S]p.

Example 5. Fig. 6 shows an excerpt of the fETA fst[S@] in Fig. 5 depicting the
fReqs for states (0, 0, 0), (0, 1, 1), and (0, 2, 0). First note that an output of join is
enabled at local state 0 in both components Au1

and Au2
. For rcp({u1}, join) at

state (0, 0, 0) we get fe({u1}, join, (0, 0, 0)) = µ∨b according to the constraints of
both join transitions in Au1 . Moreover, P (fst, {u1}, join) = {{µ}, {b}} = JfmK
and therefore χP (fst,{u1},join) is equivalent to fm. Also P (0, 0, 0) = {{µ}, {b}}
since state (0, 0, 0) is reachable in both products. So prod({u1}, join, (0, 0, 0)) =
(µ ∨ b) ∧ fm ∧ fm, which reduces to fm = µ ⊕ b. Thus we get the fReq
[µ⊕b] rcp({u1}, join) at (0, 0, 0). The case of {u2} is analogous.

Considering a possible simultaneous output of join by u1 and u2 we get
fe({u1, u2}, join, (0, 0, 0)) = (µ∨b)∨(µ∨b). And we get P (fst, {u1, u2}, join) =
{{b}}, since only for the product {b} a synchronisation of several users is
allowed. Therefore χP (fst,{u1,u2},join) = b ∧ ¬µ. As above, χP (0,0,0) = fm. Thus
prod({u1, u2}, join, (0, 0, 0)) = (µ∨b)∧(b∧¬µ)∧ fm, which reduces to b∧¬µ.
Hence we get the fReq [b ∧ ¬µ] rcp({u1, u2}, join) at (0, 0, 0).

An interesting case is [µ ∧ ¬b] rcp({u1}, join) at (0, 1, 1). Here fe({u1}, join,
(0, 1, 1)) is again µ∨b and χP (fst,{u1},join) is equivalent to fm. However, the state
(0, 1, 1) is only reachable in the product {µ}, i.e. P (0, 1, 1) = {{µ}}. Therefore,
χ
P (0,1,1) = µ∧¬b. In summary, prod({u1, u2}, join, (0, 1, 1)) = (µ∧b)∧fm∧(µ∧
¬b), which reduces to (µ ∧ ¬b). The other fReqs are computed similarly. B

Next, we de�ne featured compliance with an fReq. We use a logical formula-
tion which, as we shall see, captures compliance for the whole family of products.

The fETA fst[S] is featured compliant with an fReq [ψ] rcp(J, a)@q if for

some n ≥ 1 and for k = 1, . . . , n there exist transitions tk = q
(J,a,Rk)−−−−−→fst[S] q

k

with Rk 6= ∅ such that |= ψ →
∨
k∈{1,...,n} γ(t

k).
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0, 0, 0 0, 2, 0

0, 1, 1

· · · · · ·

[b ∧ fm] {u2}, join, {s}

[µ ∧ fm]
{u2}, join, {s}

[µ ∧ fm]
{s}, confirm, {u2}

[> ∧ fm] {u2}, leave, {s}

fm = µ⊕ b

[µ⊕ b] rcp({u1}, join)
[µ⊕ b] rcp({u2}, join)
[b ∧ ¬ µ] rcp({u1, u2}, join)

[µ⊕ b] rcp({u1}, join)
[µ⊕ b] rcp({u2}, leave)

[µ ∧ ¬b] rcp({u1}, join)
[µ ∧ ¬b] rcp({s}, confirm)

Fig. 6: Part of fst[S@] from Fig. 5 enriched with Reqs

The de�nition of featured compliance can be unfolded by considering all
p ∈ JfmK. This shows the relationship to the compliance notion for ETA.

Lemma 2. Let [ψ] rcp(J, a)@q be an fReq for the fETA fst[S]. Then:fst[S] is featured compliant

with [ψ] rcp(J, a)@q

⇔
 ∀p⊆F with p|=ψ · ∃R 6=∅ and q′∈Q·

q
(J,a,R)−−−−→fst[S] q

′ and p |= γ(q
(J,a,R)−−−−→fst[S] q

′)


The next de�nition generalises featured compliance to featured weak compli-

ance. It is a technical but straightforward extension that transfers the concept
of weak receptiveness to the featured level.

The fETA fst[S] is featured weakly compliant with an fReq [ψ] rcp(J, a)@q if
for some n ≥ 1 and for k = 1, . . . , n there exist sequences σk of transitions

σk = qk0
(Sk

0 ,a
k
0 ,R

k
0 )−−−−−−−→fst[S] q

k
1 · · · qkmk

(Sk
mk

,a,Rk
mk

)
−−−−−−−−−→fst[S] q

k
mk+1

with qk0 = q,mk ≥ 0, (Ski ∪ Rki ) ∩ J = ∅ for i = 0, . . . ,mk−1, R
k
i 6= ∅ for

i = 0, . . . ,mk, and S
k
mk

= J such that

|= ψ →
∨

k∈{1,...,n}

∧
i∈{0,...,mk}

γ(qki
(Sk

i ,a
k
i ,R

k
i )−−−−−−−→fst[S] q

k
i+1).

We remark that Lemma 2 can be extended in a straightforward way to char-
acterise featured weak compliance.

The fETA fst[S] is featured (weakly) receptive if it is featured (weakly) com-
pliant with all fReqs for fst[S].

Example 6. We consider some fReqs for the fETA fst[S@] as depicted in Fig. 6.
The �rst fReq is [µ⊕b] rcp({u1}, join)@(0, 0, 0). As we can see in Fig. 5, there
are two transitions, say t1, t2, in fst[S@] with source state (0, 0, 0) and label
({u1}, join, {s}), such that γ(t1) = µ ∧ fm and γ(t2) = b ∧ fm. Hence, for
checking featured compliance with this fReq we have to prove:

|= µ⊕b→ (µ ∧ fm) ∨ (b ∧ fm).
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But this is easy, since the conclusion is equivalent to fm = µ⊕b. To achieve
this it is essential to have the disjunction of γ(t1) and γ(t2) in the conclusion.

As a second fReq we consider [b ∧ ¬µ] rcp({u1, u2}, join)@(0, 0, 0). As we
can see in Fig. 5, there is one transition in fst[S@] with source state (0, 0, 0) and
label ({u1, u2}, join, {s}), which has the transition constraint b ∧ ¬µ. Featured
compliance with this fReq holds trivially, since

|= b ∧ ¬µ→ b ∧ ¬µ.

As a last example, consider the fReq [µ ∧ ¬b] rcp({u1}, join)@(0, 1, 1). In state
(0, 1, 1), no transition with action join can be performed by the fETA fst[S@].
Therefore featured compliance does not hold. However, featured weak compliance
holds for the following reasons. We take n = 1 (in the de�nition of featured weak
compliance) and select, in Fig. 5, the transition sequence

(0, 1, 1)
[µ∧fm]({s}, confirm,{u2})
−−−−−−−−−−−−−−−−→ (0, 2, 0)

[µ∧fm]({u1}, join,{s})
−−−−−−−−−−−−−−→ (1, 2, 1).

Then, we get the following proof obligation (conjoining the constraints of the two
consecutive transitions in the conclusion): |= (µ ∧ ¬b) → (µ ∧ fm) ∧ (µ ∧ fm).
Obviously, this holds since the conclusion reduces to µ∧¬b. We can show that
the fETA fst[S@] is either featured compliant or featured weakly compliant with
any fReq and therefore it is featured weakly receptive. B

4.3 From Featured Receptiveness to Receptiveness

This section presents our main result. We show that instead of checking product-
wise each member of a family of product con�gurations for (weak) receptiveness,
it is su�cient to verify once featured (weak) receptiveness for the family model.
We can even show that this technique is not only sound but also complete in
the sense, that if we disprove featured (weak) receptiveness on the family level,
then there will be a product for which the projection is not (weakly) receptive.

Theorem 2. Let S be an fSys with feature model fm, let fst be an fSTS, and
let fst[S] be its generated fETA. Then:[
fst[S] is featured (weakly) receptive

]
⇔

[
∀p∈JfmK · fst[S]p is (weakly) receptive

]
Example 7. In Example 6 we showed that the fETA fst[S@] is featured weakly
receptive. Therefore, by applying Theorem 2, we know that for both products
{µ} and {b}, the ETA fst

µ[Sµ

@] and fst
b[Sb

@] are weakly receptive (a result which
we checked product-wise in Example 4). B

Note on Complexity Note that an fReq for fst[S] necessarily involves a syntac-
tic application condition, which is a feature expression that characterises the set
of valid products p for which the featureless Req is applicable for fst[S]p. Part of
this feature expression is a characterisation χP (q) of the set P (q) of products for
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which state q is reachable by transitions of fst[S] whose constraints are satis�ed
by p, which requires a reachability check for q. This may seem computationally
expensive. However, it has been shown that static analysis of properties of fTSs
that concern the reachability of states and transitions in valid products (LTSs)
is feasible in reasonable time even for fTSs of considerable size, by reducing the
analysis to SAT solving [7]. In fact, while SAT solving is NP-complete, SAT
solvers are e�ectively used for static analysis of feature models with hundreds
of thousands of clauses and tens of thousands of variables [32,31]. Finally, we
note that the results presented in this section are still sound, but not complete,
without the aforementioned characterisation of P (q).

5 Tool Support

We implemented a prototypical tool to specify and analyse fETA. This requires
to de�ne an fSys over a set of fCA, a shared feature model, and an fSTS. The
tool can be used online and downloaded at https://github.com/arcalab/team-a.
The interface is organised by 5 widgets (illustrated in Fig. 7): 1 a text editor
to specify a fETA, using a dedicated domain-speci�c language; 2 an fTS view
of the fETA, together with the fReqs generated automatically for each state,
similar to Fig. 6; 3 a set of example fETA; 4 a view of each individual fCA,
similar to Fig. 1; and 5 some statistics of the various models, including the
number of states, transitions, features, and products.

The tool is written in Scala and it uses the Play Framework to generate an
interactive website using a client-server architecture. The Scala code is compiled
into JavaScript using Scala.js to run on the client side, and into JVM binaries
that run on the server side. The server side is currently needed to use an o�-the-
shelf Java library, Sat4j, to �nd all products that satisfy a feature model.

6 Conclusion

We introduced featured team automata to specify and analyse systems of fea-
tured component automata and to explore composition and communication-
safety. We showed that family-based analysis of receptiveness (no message loss)
su�ces to study receptiveness of product con�gurations. We implemented our
theory in a prototypical tool.

In the future, we intend to extend our theory to address i) responsiveness,
i.e. no inde�nite waiting for input, and ii) compositionality, i.e. extend fETA
to composition of systems (that behaves well with fSTSs) and investigate con-
ditions under which communication safety is preserved by fETA composition.
Moreover, we will further develop the tool and analyse the practical impact of
fETA on the basis of larger case studies. This involves a thorough study of the
e�ciency of featured receptiveness checking compared to product-wise checking
of receptiveness. Finally, we aim to implement a family-based analysis algorithm
that computes, for a given fETA, the set of all product con�gurations that yield
communication-safe systems.

https://github.com/arcalab/team-a
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Fig. 7: Screenshots of the widgets in the online tool for fETA
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A Proofs

Theorem 1. Let S be an fSys with feature model fm, let fst be an fSTS, and
let p ∈ JfmK be a valid product. Then:

fst[S]p = fst
p[Sp].

Proof. Both LTSs share the same structure from S: the state space Q, the initial
states I, and the system labels. Furthermore, the transitions of both systems are
a subset of the induced set of system transitions E from S. It remains to show
that E1 = E2, where E1 ⊆ E is the set of transitions of the �rst LTS and E2 ⊆ E
the one of the second.

Let γ be the transition constraint of fst[S] and, for each i ∈ N of S, γi
be the local transition constraint of Ai. Also recall that γ̂(q

(S,a,R)−−−−−→ q′) =∧
i∈(S∪R) γi(qi

(S,a,R)−−−−−→Ai
q′i), S = (N , (Ai)i∈N ), and Sp = (N , (Api )i∈N ). The

set of transitions of S and from Sp are, respectively:
� E = {q (S,a,R)−−−−−→ q′ | ∀i∈(S∪R) · qi

a−→Ai q
′
i, ∀j∈N\(S∪R) · qj=q′j}

� E[Sp] = {q (S,a,R)−−−−−→ q′ | ∀i∈(S∪R) ·[qi
a−→Ai q

′
i ∧ p |= γi(qi

a−→Ai q
′
i)], ∀j∈N\(S∪R) ·qj=q′j}

Finally, we show that E1 = E2. By de�nition, E2 = {t ∈ E[Sp] | t |= fst
p}, and:

E1

{by def.} = {t ∈ E | p |= γ(t)}
= {t ∈ E | p |= [γ̂(t) ∧ χP (fst,t)]]}
= {t ∈ E | [p |= γ̂(t)] ∧ [p |= χ

P (fst,t)]}
= {t ∈ E | [p |= γ̂(t)] ∧ [p ∈ JfmK] ∧ [t |= fst

p]}
{p ∈ JfmK} = {t ∈ E | [p |= γ̂(t)] ∧ [t |= fst

p]}
{unfolding E, E[Sp], γ̂} = E2 ut

Lemma 1. For all products p it holds: [prod(J , a, q)] rcp(J, a)@q is an fReq for
fst[S] and p |= prod(J, a, q) i� p ∈ JfmK and rcp(J, a)@q is a Req for fst[S]p.

Proof. (⇒): By de�nition of prod(J, a, q) (in particular of χP (fst,J,a) and χP (q)),
|= prod(J, a, q)→ fm. Hence, p |= prod(J, a, q) implies p ∈ JfmK. By assumption,
we know that q is a reachable state of fst[S] and p |= χ

P (q), i.e. p ∈ P (q).
Therefore, q is a reachable state of fst[S]p. Moreover, we know that ∅ 6= J ⊆ N
and ∀j∈J ·a ∈ Σ!

j ∧a enAj@qj . Since, by assumption, p |= fe(J, a, q), there exists
in each Aj a transition tj starting in qj with action a such that p |= γj(tj).
Hence, by de�nition of projection, a enAp

j
@qj for all j ∈ J . Finally, we know

that p |= χ
P (fst,J,a). Therefore, fst(p, a) = (s, r) ⇒ |J | ∈ s ∧ 0 /∈ r. Since

fst
p(a) = fst(p, a) we get fstp(a) = (s, r)⇒ |J | ∈ s ∧ 0 /∈ r. Thus, rcp(J, a)@q is

a Req for the ETA fst
p[Sp] which, by Theorem 1, coincides with fst[S]p.

(⇐): Let p ∈ JfmK and rcp(J, a)@q be a Req for fst[S]p which is the ETA
fst

p[Sp]. Then q is a reachable state of fst[S]p and therefore, by de�nition of fTS
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projection, q is reachable in fst[S] by transitions whose constraints are satis�ed
by p. Hence, q is a reachable state of fst[S] which belongs to P (q), i.e. p |= χ

P (q).
Furthermore, by de�nition of Reqs we know that ∅ 6= J ⊆ N such that

∀j∈J · a ∈ Σ!
j ∧ a enAp

j
@qj and fst

p(a) = (s, r) ⇒ |J | ∈ s ∧ 0 /∈ r. From

a enAp
j
@qj for all j ∈ J it follows, by de�nition of projection, that in each Aj

there exists a transition tj starting in qj with action a such that p |= γj(tj).
Therefore, a enAj

@qj for all j ∈ J and p |= fe(J, a, q).
Since fst

p(a) = (s, r) ⇒ |J | ∈ s ∧ 0 /∈ r and fst
p(a) = fst(p, a), we get that

p ∈ P (fst, J, a). Thus p |= χ
P (fst,J,a).

In summary, p |= prod(J, a, q) and [prod(J , a, q)] rcp(J, a)@q is an fReq for
fst[S]. ut

Lemma 2. Let [ψ] rcp(J, a)@q be an fReq for the fETA fst[S]. Then:fst[S] is featured compliant

with [ψ] rcp(J, a)@q

⇔
 ∀p⊆F with p|=ψ · ∃R 6=∅ and q′∈Q·

q
(J,a,R)−−−−→fst[S] q

′ and p |= γ(q
(J,a,R)−−−−→fst[S] q

′)


Proof. (⇒): Since fst[S] is featured compliant, there exists n ≥ 1 and for k =

1, . . . , n there exist transitions tk = q
(J,a,Rk)−−−−−→fst[S] q

k with Rk 6= ∅ such that

|= ψ →
∨
k∈{1,...,n} γ(t

k). Let p ⊆ F be a product such that p |= ψ. Then

p |=
∨
k∈{1,...,n} γ(t

k). Hence, there exists i ∈ {1, . . . , n}, Ri 6= ∅ and qi ∈ Q such

that q
(J,a,Ri)−−−−−→fst[S] q

i and p |= γ(q
(J,a,Ri)−−−−−→fst[S] q

i).

(⇐): Let {p1, . . . , pn} be the set of products which satisfy ψ. This set is �nite,
since F is �nite, and nonempty, since ψ is satis�able. For each k = 1, . . . , n we

can choose, by assumption, a transition tk = q
(J,a,Rk)−−−−−→fst[S] q

k with Rk 6= ∅ such
that pk |= γ(tk). Therefore |= ψ →

∨
k∈{1,...,n} γ(t

k) and thus fst[S] is featured
compliant with [ψ] rcp(J, a)@q. ut

Theorem 2. Let S be an fSys with feature model fm, let fst be an fSTS, and
let fst[S] be its generated fETA. Then:[
fst[S] is featured (weakly) receptive

]
⇔

[
∀p∈JfmK · fst[S]p is (weakly) receptive

]
Proof. We perform the proof for receptiveness. The case of weak receptiveness
is more technical but can be proven along the same lines (by using sequences of
transitions and a straightforward generalisation of Lemma 2).

(⇒): Let p ∈ JfmK and let rcp(J, a)@q be an arbitrary Req for fst[S]p.
Then, by Lemma 1, [prod(J , a, q)] rcp(J, a)@q is an fReq for fst[S] and p |=
prod(J, a, q). By assumption, fst[S] is featured receptive and thus featured com-
pliant with this fReq. Therefore, by Lemma 2, there exist R 6= ∅ and q′ ∈ Q
such that q

(J,a,R)−−−−→fst[S] q
′ and p |= γ(q

(J,a,R)−−−−→fst[S] q
′). Hence, by de�nition of

fETA projection, q
(J,a,R)−−−−→fst[S]p q

′. This shows that fst[S]p is compliant with
rcp(J, a)@q. Since rcp(J, a)@q was chosen arbitrarily, fst[S]p is receptive.
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(⇐): Let [prod(J , a, q)] rcp(J, a)@q be an arbitrary fReq for fst[S]. Let p be
an arbitrary product such that p |= prod(J, a, q). Then, by Lemma 1, p ∈ JfmK
and rcp(J, a)@q is a Req for fst[S]p. By assumption, fst[S]p is compliant with

this Req. Hence, there exist R 6= ∅ and q′ ∈ Q such that q
(J,a,R)−−−−→fstp[S] q

′. By

de�nition of projection, q
(J,a,R)−−−−→fst[S] q

′ and p |= γ(q
(J,a,R)−−−−→fst[S] q

′). Then,
by Lemma 2, fst[S] is featured compliant with [prod(J , a, q)] rcp(J, a)@q. Since
the fReq was chosen arbitrarily, fst[S] is receptive. ut
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