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Abstract

Web-based Analysis of Reo Connectors

Combining independent software components usually requires additional

code which can be difficult to maintain and is prone to errors. Connectors

are used to describe how to combine independent components by restricting the

possible interactions between their interfaces. The main focus of this work is on

the formal analysis of Reo connectors, and a calculus of Reo connectors.

The literature related to the formal analysis of Reo connectors provides dif-

ferent perspectives on it, which sometimes do not fit with each other on every

level. The first part of this document presents the Reo connectors, accompa-

nied by background work related to port automata semantics and an mCRL2

encoding of connectors. The remaining documented work focuses on the calcu-

lus of Reo connectors for which there are no tools to automatically analyse this

calculus, other than a type-checker for an embedded domain specific language.

We formalize this calculus in terms of port automata semantics, and provide an

encoding, based on this semantics, to mCRL2. We also show that the formalized

semantics, and the mCRL2 encoding are correct.

Finally, we present a set of web-based tools for analysing connectors–named

ReoLive–requiring only an offline Internet browser with JavaScript support,

which also supports a client-server architecture for more complex operations.

ReoLive includes tools that generate port automata, mCRL2 processes, and

graphical representations of instances of connectors, developed in the Scala

language and compiled into JavaScript. The resulting framework is publicly

available, and can be easily experimented without any installation or a running

server.
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Resumo

Análise Web de Conetores Reo

Combinar componentes de software independentes requer geralmente código

adicional, que pode ser dif́ıcil de manter e facilmente conduz a erros. Conetores

são usados para descrever a combinação de componentes independentes, através

de restrições nas posśıveis interações entre as suas interfaces. O principal foco

deste trabalho encontra-se na análise formal de conetores Reo, e num cálculo de

conetores Reo.

A literatura relacionada com a análise formal de conetores Reo providen-

cia perspetivas diferentes sobre esta, que, por vezes, não se encaixam perfeita-

mente entre si. A primeira parte deste documento apresenta os conetores Reo,

e completa esta apresentação com algum trabalho anterior relacionado com a

semântica em autómatos de porta e codificação de conetores em mCRL2. O

restante trabalho documentado, centra-se no cálculo de conetores Reo, para o

qual não existem atualmente ferramentas para analisar automaticamente este

cálculo, para além de um type-checker para uma linguagem espećıfica de cone-

tores. Neste documento formalizamos o cálculo em termos de semântica de

autómatos de porta, e definimos uma codificação, baseada nesta semântica, em

mCRL2. Para além disso, mostramos que a semântica e a codificação estão

corretos.

Por último, introduzimos um conjunto de ferramentas baseadas em web para

analisar conetores—chamada ReoLive— que requer apenas um explorador de in-

ternet offline, que suporte JavaScript, e que também permite uma arquitetura

de cliente-servidor para operações mais complexas. O ReoLive inclúı ferramen-

tas que geram autómatos de porta, processos mCRL2, e representações gráficas

de instâncias de conetores, desenvolvidas na linguagem Scala e que compilam

para JavaScript. A framework final está dispońıvel publicamente e pode ser

experimentada sem qualquer instação ou servidor ativo.
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Chapter 1

Introduction

Service oriented computing aims at providing individual software components,

each performing simple tasks, which can be assembled together to generate a

complex system. These components are designed to be autonomous, reusable

and independent from their application environment, and, as such, coordination

between different components is not a trivial task. Usually it is necessary to

developed code to generate the coordination. This code can become complex

and difficult to maintain.

The Reo coordination language1 was introduced by Arbab [1] to generate co-

ordination between different components, by composing atomic entities – called

channels – into a complex connector. These channels have a predefined be-

haviour, which defines how the information received is sent to other channels.

To verify the behaviour of Reo connectors, Kokash et al. [7] developed an en-

coding of connectors into models in the mCRL2 specification language,2 which

is used to model and analyse concurrent systems.

Proença and Clarke [8] investigated how one can specify and combine con-

nector families, and how to check if the interfaces of these families match. Their

core calculus is a monoidal category, where connectors are morphisms composed

sequentially with the morphism composition ‘;’, and in parallel with the tensor

operator ‘⊕’. This calculus was formalised with a tile semantics that describes

the behaviour of a connector, and how to combine tiles between two connectors.

1http://reo.project.cwi.nl/reo/
2https://mcrl2.org
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Currently there are no tools to automatically analyse a connector described

in this calculus, other than a type checker that verifies if connectors are properly

connected. To solve this, we create an encoding of the core calculus into mCRL2,

and we try to extend this to the full calculus of connector families proposed in

[8]. Our approach follows the same steps as the encoding proposed by Kokash et

al. [7]. We could propose an encoding of the core calculus into Reo connectors,

as an alternative, effectively reusing the results from Kokash. This approach

would create several problems. First, the encoding by Kokash is not currently

being maintained. Second, Reo connectors cannot be extended into families,

which could place limitations on a possible future encoding of the full calculus.

Furthermore, we have a finer control of the semantics and extensions of our

calculus using a direct encoding.

We build a web framework –ReoLive– to provide tools to analyse connectors

in this calculus. Existing tools to create, edit and analyse Reo connectors are

available as a set of plugins in the Eclipse IDE, which are not actively sup-

ported. These plugins require the installation of the IDE which is a powerful

tool, and therefore, requires a large amount of computational power. We want

our framework to be lightweight and independent from resource consuming plat-

forms. Furthermore, we want this framework to be easily extensible, to include

new tools developed for the calculus. Currently, our framework should present

a type-checking analysis, with behaviour analysis and generate the mCRL2 en-

coding for the connector instances.

Organization

In Chapter 2 we present an introductory background on Reo, mCRL2 and the

encoding presented in [7]. The following chapter begins by presenting the cal-

culus of connectors presented in [8]. Following this, we describe the semantics

of the calculus in terms of port automata semantics, which is used in the fol-

lowing section when defining the encoding of the calculus into mCRL2. For the

semantics and the encoding we present the respective proofs of correctness. In

Chapter 4 we present the ReoLive framework, which presents a set of tools to

analyse instances of the connector calculus. We present the user interface of the

framework, its architecture and development details, which gives insight on how

2



to extend the framework. We conclude this chapter by explaining some prob-

lems that arose when generating an encoding for the full calculus of connector

families. Finally, Chapter 5 presents some conclusions and future work.

3



Chapter 2

Background

We rely on previous work done in the context of coordination tools, and process

algebras. More concretely, the calculus of connectors presented in Chapter 3

uses Reo channels as atomic entities, and we adapt semantic models for Reo

connectors to this calculus. In this chapter we begin by presenting the Reo

coordination language [1](Section 2.1), followed by some basic mCRL2 syntax

and semantics [5](Section 2.2). Finally, we revisit the translation from Reo to

mCRL2 by Kokash et al. [7](Section 2.3), providing a more detailed proof of

their main result.

2.1 The Reo Coordination Language

Reo is a language used to coordinate the communication between independent

components. It uses the notion of channels as atomic entities which specify the

behaviour of data flowing through the channel. These channels are combined

to form complex connectors. In the eclipse IDE, Reo contains a toolset for

development and analysis of Reo connectors. We begin this section by explaining

the basic Reo syntax and behaviour of channels. Then, we proceed to formalise

its semantics in relation to port automata.

4



2.1.1 Basic Concepts

Reo connectors coordinate the flow of information between components. A

component is a software implementation running on a machine, which sends to,

and receives data from other components. A connector abstracts itself from the

behaviour of the components, and only determines how a piece of data flows

between the components it connects to.

A connector is a set of channels and a set of nodes, which can be organized in

a graph. Channels are the atomic entities of connectors, which have a defined

behaviour explaining the flow of information contained in it. Each channel

contains channel ends, which can be source ends, or sink ends. Source ends allow

information to be received by the channel, while sink ends allow information to

flow out of the channel. Channels have exactly two ends, which can be of any

type. This means that a channel can have just source ends, sink ends, or both.

Channels may have different states, depending on the defined behaviour. We

can join channel ends to form nodes. Nodes are groups of channel ends. Each

channel end forms, by itself, a node. Furthermore, a channel end belongs to

exactly one node. We connect different channels by joining the nodes of the

desired channel ends we want to connect. The behaviour of nodes is as follows:

a node takes the information available from a sink end belonging to it, and

replicates it to all the source ends contained in the node. When a node is

connected to a component, it can only contain source ends or sink ends. In

this case, it either reads from the component into the source ends, or copies the

information from a sink end into the component.

2.1.2 Channels

As there are many possible types of channels, with different behaviours, we will

only define a small subset of channels which are important to the work of this

document. In Fig. 2.1 we present the graphical representation of the set of

channels defined.

5



Sync LossySync SyncDrain

Empty Fifo

•

Full Fifo

Figure 2.1: Graphical representation of the different channels

Sync

A sync channel contains two channel ends, one of them is a source end, and the

other is a sink end. A sync channel receives data through the source end if and

only if the data can immediately be dispersed through the sink end.

Fifo

A fifo channel contains a source end, and a sink end. It also has two states:

empty, and full. When the fifo is empty, data can flow into the channel through

the source end, turning it into a full fifo. The full fifo must hold the data until

a later moment when it is ready to be dispersed through the sink end. This is

not mandatory, which means, if a fifo can never disperse the data through the

sink end, this data can remain in the fifo indefinitely.

Lossy Sync

A lossy sync contains a source end, and a sink end. Data can flow at any moment

into the lossy sync. If this data can be immediately dispersed through the sink

end, then the data flows out of the lossy; otherwise the data is lost (hence the

name).

Sync Drain

Both channel ends of the sync drain are source ends. This means that data can

never flow out of this type of channel. A sync drain can receive data through

one of the source ends, if and only if the other source end receives data as well.

The main purpose of the channel is to synchronise data flow between different

channels. Fig. 2.3 gives an example of the use for this channel.

6



Figure 2.2: Sync and Lossy channels connecting to a fifo channel

2.1.3 Composing Channels

We can join the channels presented before to form more complex connectors.

We compose the channels by joining the nodes of the channel ends we want

to connect. Nodes are specific entities which have a defined behaviour which

coordinates the information between the channels. A node behaves by replica-

ting the information of a sink end belonging to the node into all the source ends

belonging to it. If more than one sink end wants to send data, the node chooses

one of these sink ends non-deterministically and immediately replicates the data

received from it, putting the remaining sink ends on hold until a later moment.

Consider the connector in Fig. 2.2. The figure shows 3 channels and 4 nodes

forming a connector. Node c contains the sink ends of the sync and lossy sync.

Since the fifo is empty, either the lossy sync or the sync channels can send data

to the fifo, making it full. When the fifo is full, the lossy can receive data, but

since it cannot flow into the source end of the fifo, the data is lost. Since the

sync cannot lose data, then it cannot receive data when the fifo is full. The full

fifo could disperse data through the sink end, if the source ends contained in

the node d (or components connected to it) could receive it.

Consider now Fig. 2.3. In this case, if data can exit through both nodes f

and g, then the sync channels respectively connected to them can receive data.

Since both receive data from the lossy channels connected to b, then data reaches

the node d through the sync ends connected to c and e. Since node d can receive

data from only one of them at the same time, then, at each moment, only one

of the nodes c or e can receive data. Since there is a sync drain connected to d

and b, when data reaches b and is replicated to both lossy channels, one of them

7



Figure 2.3: The exclusive router connector

cannot lose the data, while the other one must lose it because of the previous

condition. So, in this figure, we have a connector which when data reaches the

node a, it will flow until it reaches either f or g, but not both at the same time.

2.1.4 Port Automata Semantics

We will now formalise the concepts of channels and channels composition with

port automata as a semantic model.

Definition 2.1. A port automaton (PA) [6] is a tuple A = (Q,N ,→, q0) where:

• Q is a set of states;

• N is a set of port names;

• →⊆ Q× 2N ×Q is the transition relation between states;

• q0 is the initial state.

We use the notation q
N−→ r to denote (q,N, r) ∈→. Furthermore, port

automata have graphical representations, using the states as vertices and the

transitions in → as edges.

Port automata describe transitions between states through ports. In the

case of Reo, the port names are the channel ends, and the transitions describe

which channel ends contain information flowing in a moment. In Fig. 2.4 we

define the port automata which give semantics to the channels defined in this

8



a b

sync q0

{a, b} a b

lossy sync q0

{a, b}

{a}

a b

sync drain q0

{a, b} a b

fifo

q0 q1

{a}

{b}

Figure 2.4: Port Automata of Reo channels.

section, based on the constraint automata of Baier et al. [2], but abstracting

away the data. Furthermore, port automata do not catch the direction of the

flow of information, or classify the channel ends (notice that the port automata

for the sync and sync drain channels are equivalent).

Example 2.1. Consider a fifo with source end a, and sink end b. When empty,

this fifo allows data to be read through a, and when full, data can flow out

through b. So the automaton of the fifo is A = ({q0, q1}, {a, b}, {q0
{a}−−→

q1, q1
{b}−−→ q0}, q0), where the state q0 represents the empty fifo and q1 rep-

resents the full fifo. This automaton is one of the automata represented in

Fig. 2.4.

To compose the port automata of individual channels, we need to define

the behaviour of nodes as port automata. Given an arbitrary node, the port

automaton associated to this node contains exactly one node, say q, and, for

each sink end b in the node, a transition (q,N, q), where N contains the sink

end b and all the source ends of the node. Consider the following example for a

better understanding:

Example 2.2. Consider a node n which connects the sink ends a and b with

the source ends c, d, and e. The port automata of n is A = ({q0}, {a, b, c, d, e},

→, q0), where the transition function has two transitions:

• q0
{a,c,d,e}−−−−−→ q0;

• q0
{b,c,d,e}−−−−−→ q0.

To generate the automaton of a Reo connector, we begin by generating the

port automata of the individual channels, and nodes, ensuring that port names

9



q0

{a, c1}

sync

q1

{b, c2}

{b}

lossy sync

q2 q3

{c3}

{d}

fifo

q4

{c1, c3}

{c2, c3}

node c

Figure 2.5: Port automata of the channels and node in Fig. 2.2

are correct, i.e., every channel end has a unique port name, and each channel

end is used in its channel automaton and in the automaton corresponding to

its containing node. Then, we apply the product of port automata as defined

in Definition 2.2.

Definition 2.2 (Product of PA [6]). The product of two port automata Ai =

(Qi, Ni,→i, q0,i), for i ∈ {1, 2}, is defined as A1 ./ A2 = (Q1 ×Q2, N1 ∪N2,

→, (q0,1, q0,2)) where → is defined by the rules below.

q1
X1−−→1 p1 q2

X2−−→2 p2

X1 ∩N2 = X2 ∩N1

(q1, q2)
X1∪X2−−−−−→ (p1, p2)

q1
X1−−→1 p1

X1 ∩N2 = ∅

(q1, q2)
X1−−→ (p1, q2)

q2
X2−−→2 p2

X2 ∩N1 = ∅

(q1, q2)
X2−−→ (q1, p2)

In the following example we explain, with a simple example, the construction

of the port automata of a Reo connector.

Example 2.3. Consider the Reo connector in Fig. 2.2. Consider that the node

c contains the sink ends c1 of the sync channel, c2 of the lossy sync, and the

source end c3 of the fifo channel. Then, the port automata of the individual

channels are defined as in Fig. 2.5, as well as the automaton of the node c.

Using Definition 2.2 we obtain the resulting port automata, by applying the

product of the automata of the channels and node:

q0 q1

{b}

{b, c2, c3}

{a, c1, c3}

{a, b, c1, c3}

{b}

{d}

{b, d}

10



In the initial state, information can flow through a, or b. When information

flows from b it may be lost, and the state remains the same, or it may flow to

sink end c2, changing the state of the fifo. When a transition through a occurs,

it must always be accompanied by c1, and c3, changing the state of the fifo. On

the state relating to the full fifo, a transition through b may occur, meaning that

the lossy loses information, or a transition through d may occur, accompanied

or not by b. This is equivalent to the behaviour described for the connector

when explaining Fig. 2.2.

Another important operation in port automata is hiding ports following [6]:

Definition 2.3 (Hiding in PA). Let (A) = (Q,N,→, q0) be a port automaton

and X ⊆ N . Hiding ports X from A yields the port automaton A \ X =

(Q,N \X, 99K, q0), where qi
Y \X
99K qj iff qi

Y−→ qj .

It is necessary throughout this document to define a notion of behavioural

equivalence between port automata. In this case, we use the notion of bisimi-

larity [6, 2] defined below:

Definition 2.4 (Bisimilarity). Given port automata A1 = (Q1,N1,→1, Q0,1),

and A2 = (Q2,N2,→2, Q0,2), a bisimulation between A1, and A2 is a relation

∼⊆ Q1 ×Q2 such that forall (q1, q2) ∈∼:

1. If q1
a−→ p1 then there exists p2 ∈ Q2 s.t. q2

a−→ p2, and (p1, p2) ∈∼.

2. If q2
a−→ p2 then there exists p1 ∈ Q1 s.t. q1

a−→ p1, and (p1, p2) ∈∼.

If (Q0,1, Q0,2) ∈∼, for some bisimulation ∼ between A1 and A2, we say that

A1 is bisimular to A2, denoted A1
∼= A2.

Bisimilarity is a relation that represents the equality of the behaviour of

different port automata. This means that different port automata can have

similar behaviour. This idea is illustrated in Example 2.4.

Example 2.4. Consider the automata in Fig. 2.6. The relation

R = {(q1, p1), (q2, p2), (q2, p4), (q3, p3)}

is a bisimulation, and thus A1
∼= A2.
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q2 q3

q1

{A} {A}
{C}{B}

A1

p1

p2 p3 p4

{A}

{B}

{A} {B}

{A}

{C}

A2

r1

r2

{A}{B} {C}

A3

Figure 2.6: Example of bisimilar and non bisimilar PA

We now prove A1 and A3 are not bisimilar. The proof is by reduction to

absurdity. Consider a bisimulation R ⊆ Q1 ×Q3, where Q1 and Q3 are the set

of states of A1 and A3 respectively. Let (q1, r1) ∈ Q. Since neither q2 nor q3

can make transitions labelled with {B} or {C} but r2 can, it follows neither

(q2, r2) nor (q3, r2) is in R. On the other hand, since r1
{A}−−→ r2, (q1, r1) ∈ R,

and R is a bisimulation, there is a transition q1
{A}−−→ q, with (q, r2) ∈ R. Since

neither (q2, r2) nor (q3, r2) is in R, q can only be q1, so (q1, r2) ∈ R. But

this is absurd, because r2 can do a transition with label {B} while q1 cannot.

Therefore A1 � A3.

2.2 The mCRL2 Toolset

The mCRL2 language is a specification language used to model and verify com-

municating processes. It has an extensive toolset which can be used to analyse

the behaviour and to prove properties over a given model (ex. absence of dead-

lock). The language used to model the processes is an extension of the process

algebra language, with notions of data, and time, functions and predicates.

In this section we present a basic subset of the mCRL2 syntax, which will

be used throughout the document. We will briefly explain the operational se-

mantics and bisimulation relation of the process algebra. Finally we give a brief

introduction of the mCRL2 toolset. Since the toolset is very extensive, we refer

to [5] and to the mCRL2 web site1, which contain the full documentation of the

toolset.

1https://mcrl2.org
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2.2.1 Basic Concepts

The basic elements of any model are actions. Actions represent an atomic event

which can be parameterized with data. By combining and synchronising the

actions, we get processes. Actions are labelled with an identifier (usually a low

case letter).

A multiaction can be constructed according to the following BNF:

α ::= τ | a | α1|α2

where τ is a multiaction containing no actions, and a is an action.

Processes define when multiactions can occur. For instance the process P =

a.(b+c) denotes a process that specifies that a can occur, followed by either b

or c. We denote processes with upper case letters. The following list contains

some relevant processes and process operations:

• multiaction (α): The actions in α must occur simultaneously;

• sequence (P . Q): The first action of process Q can only occur after the

last action in P happens;

• parallelism (a.P ‖ b.Q): Either a, or b can occur, or both can occur

simultaneously;

• choice (P +Q): Either P or Q can succeed;

• hiding (τH(P )): Hides the actions in the set H (or renames to τ), when

P executes;

• blocking (∂B(P )): Using a set of actions B, denotes that the actions in B

cannot occur in ∂B(P );

• communication (ΓC(P )): Where elements of C have the format a|b 7→ c,

when actions a and b occur simultaneously in P , they are replaced by c;

• renaming (ρR(P )): Where R is a set of renamings of the form a 7→ b. The

occurrences of actions a are replaced in P by b;

• deadlock (δ): which denotes the process without any possible actions.

• recursion: a process can refer to itself in its definition.

13



An mCRL2 model has a defined structure, where we need to define the

actions used, the processes, and then specify the initial process of the system.

Although this is the structure we use throughout the document, more complex

structures, with predicates and functions can be defined in mCRL2. Since we

do not need these types of structure, we will simply generate a program with

the structure of the following example.

Example 2.5. Consider the process of a simple vending machine which, after

receiving a coin, provides a beverage. The actions rcoin and sbeverage represent

receiving a coin, and sending a beverage, respectively. The model of this process

could be defined as follows:

act

rco in , sbeverage ;

proc

P = r co in . sbeverage .P ;

in i t

P;

2.2.2 Process Semantics

We denote the set of all processes as P, and the set of all multiactions as M.

Given a multiaction α, we define α{} as the set of actions contained in the

multiaction α; furthermore we define ΘH(α) as the function that, given the set

H of actions, hides the respective actions in α, and the function γC(α) as the

function that, for each triple a|b → c, replaces in α the actions a and b for the

action c, if both actions a, and b exist in α. Finally, the function R •α replaces

the actions in the multiaction α using the mapping in R. These functions are

formally defined in [5].

Using these auxiliary functions we can define the operational semantics of

mCRL2 through the transition relation →∈ P ×M × P, and the termination

relation→X∈ P×M. We define these relations based on [5] using the deduction

rules in tables 2.1 to 2.7, defining a structured operational semantics.

Having defined the operational semantics of process algebras, we can define

the concept of bisimilarity of programs. Our definition abstracts the relation

→ X, as we can consider the X operator as the termination process.

14



α
α−→ X

Table 2.1: Deduction rules for multiactions

P
α−→ X

P . Q
α−→ Q

P
α−→ P ′

P . Q
α−→ P ′.Q

Table 2.2: Deduction rules for sequential composition

Definition 2.5 (Bisimilarity of Processes [5]). Let P and Q be two processes.

We say that P and Q are strongly bisimilar, notation P ∼= Q, if and only if

there exists a relation R ⊆ P× P called a strong bisimulation such that for any

multiaction α:

1. If P
α−→ P ′ then there exists Q′ ∈ P such that Q

α−→ Q′, and P ′ ∼= Q′;

2. If Q
α−→ Q′ then there exists P ′ ∈ P such that P

α−→ P ′, and P ′ ∼= Q′;

Similarly to the case of the port automata bisimilarity, the relation R denotes

an equivalence of process execution, instead of equivalence of process definitions.

Groote et al. [5] define theorems that prove the soundness and completeness of

the axiomatisation of mCRL2 in terms of strong bisimulation.

2.2.3 The Toolset

After having a model created, we can use the mCRL2 toolset to verify it. The

first step is to convert the mCRL2 model into a linear process specification

(LPS). This conversion removes several components (e.g. parallelism) and sim-

plifies the model. It is from the generated LPS that we can use the remaining

toolset.

After having the LPS generated, we can transform it again and turn it into

a labelled transition system (LTS). A labelled transition system is a directed

multigraph, where the states represent processes, and there is an edge from

state q to state p, if the process of state q has a transition to the process of

15



P
α−→ X

P || Q α−→ Q

P
α−→ X, Q

β−→ Q′

P || Q α|β−−→ Q′

Q
β−→ X

P || Q β−→ P

Q
β−→ X, P

α−→ P ′

P || Q α|β−−→ P ′

Q
β−→ X, P

α−→ X

P || Q α|β−−→ X

P
α−→ P ′

P || Q α−→ P ′ || Q

P
α−→ P ′, Q

β−→ Q′

P || Q α|β−−→ P ′ || Q′
Q

β−→ Q′

P || Q β−→ P || Q′

Table 2.3: Deduction rules for parallel composition

P
α−→ X

τH(P )
ΘH(α)−−−−→ X

P
α−→ P ′

τH(P )
ΘH(α)−−−−→ P ′

Table 2.4: Deduction rules for the hiding operator

P
α−→ X

∂B(P )
α−→ X

α{} ∩B = ∅
P

α−→ P ′

∂B(P )
α−→ P ′

α{} ∩B = ∅

Table 2.5: Deduction rules for the blocking operator

P
α−→ X

ρR(P )
R•(α)−−−−→ X

P
α−→ P ′

ρR(P )
R•(α)−−−−→ P ′

Table 2.6: Deduction rules for the renaming operator

P
α−→ X

ΓC(P )
γC(α)−−−−→ X

P
α−→ P ′

ΓC(P )
γC(α)−−−−→ P ′

Table 2.7: Deduction rules for the communication operator

16



q1 q2

rcoin

sbeverage

Figure 2.7: Labeled transition system of the process P

state p, given by the process semantics of Section 2.2.2. This representation

simplifies the analysis of the process behaviour. For example, consider Fig. 2.7

which contains the LTS representation of the process P defined in Section 2.2.1,

where the state q1 represents the process P, while state q2 represents the process

sbeverage.P.

Another important tool that mCRL2 provides is the tool to convert LPS or

LTS into parametrized boolean equation systems (PBES). This tool requires a

µ-calculus property as input, and when the conversion is done, we can check

the validity of the resulting PBES. The µ-calculus property is the property we

want to check for the given model (e.g. absence of deadlock).

2.3 Modeling Reo Connectors in mCRL2

Just like in any programming language, analysing and verifying the behaviour

of a given connector in Reo is important to guarantee the correctness of the

communication between components. Manually verifying connectors using a se-

mantic model such as port automata can take a long time and lead to errors.

This problem can be solved by an automatic tool such as mCRL2 presented

in the previous section. Kokash et al. [7] developed a translation of Reo con-

nectors into the mCRL2 language based on several semantic models, including

constraint automata. A section of [7] is dedicated to prove the correctness of

the encoding mainly by showing that the algebraic structures of constraint au-

tomata and process algebra are preserved by their encoding. The section begins

by recalling the encoding, and its correctness. Furthermore, we extend their

proof with a soundness result for the bisimilarity, showing that the encoding of

bisimilar automata provides bisimilar processes.
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sync Sync = a|b . Sync

fifo Fifo = a . b . Fifo

sync drain Drain = a|b . Drain

lossy sync Lossy = (a + a|b) . Lossy

replicator Dupl = a|b|c . Dupl

merger Merger = (a|c + b|c) . Merger

Table 2.8: mCRL2 processes of channels.

Figure 2.8: Example of a replicator node.

2.3.1 Mapping of Reo into mCRL2

We consider the mapping of Reo into mCRL2 based on the port automata

semantics specified in Section 2.1.4. Kokash et al.[7] specifies the mapping

in terms of the constraint automata semantics, of which we ignore the data

constraints for simplicity.

In Table 2.8, we can find the individual processes in mCRL2 of each channel

with respect to the PA semantics. We combine the processes of Reo channels,

and nodes (which we define later), using parallel composition as well as synchro-

nization of the actions which represent the flow of information in channel ends.

This is better explained in the following example.

Example 2.6. Consider the replicator node in Fig. 2.8. Using the mapping of

the individual channels, we obtain the following processes:

Sync1 = a|x1 . Sync1, Sync2 = y1|b . Sync2,

18



Sync3 = z1|c . Sync3, Node = x2|y2|z2. Node

Applying the parallel and communication operators we obtain:

Replicator = ∂{x1,x2,y1,y2,z1,z2}(Γ{x1|x27→x,y1|y27→y,z1|z27→z}(Sync1 ||

Sync2 || Sync3 || Node))

The actions a, b, c, x, y, and z represent the flow of information in the

represented channel ends.

Although the previous example provides a correct composition of the chan-

nels in mCRL2 semantics, synchronising every action simultaneously becomes

inefficient when combining a large number of processes, because it results in a

state space explosion. To overcome this problem, we explore the graph structure

of Reo, synchronizing the actions as soon as possible.

Consider then a Reo connector R = (E, V ), where E is the set of channels,

and V is the set of nodes of the connector. Consider the function Chan(e)

that receives a channel e ∈ E and returns its mCRL2 process according to

Table 2.8, with actions in the format X ′′v,e where v, e indicate that the channel

end corresponding to the action belongs to channel e and node v for e ∈ E,

v ∈ V . For a node v and a channel e, we define the predicates src(v, e) to

be true if v contains a source end belonging to e, and snk(v, e) to be true if v

contains a sink end belonging to e. The function Node(v) defines the mCRL2

process of a node v ∈ V , and is defined by:

Node(v) =
∑

e:src(v,e)

(X ′v,e | ⊗f :snk(v,f) X
′
v,f ) . Node(v),

where ⊗i∈I represents the multiaction of the actions i ∈ I. In this encoding,

the actions X ′v,e and X ′′v,e are synchronised to form action Xv,e.

Finally, we define the predicate lnk(e, v, w) to hold if, for the channel e ∈ E,

e is connected to the node v ∈ V through a source or sink end, but not connected

to any node in the string of nodes w ∈ V ∗.

With these definitions we can define for the Reo connector R=(E,V), the

process P (w), which receives a string of nodes w ∈ V ∗:

P (ε) = δ

P (w . v) = ∂Hv (ΓCv (P (w) ‖ Node(v) ‖
∏

e:lnk(e,v,w)

Chan(e)))
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Figure 2.9: Example connector

Where
∏
i∈I Pi denotes the parallel composition of the processes Pi, and

Hv =
{
X ′v,e, X

′′
v,e | e ∈ E, src(v, e) ∨ snk(v, e)

}
, and

Cv =
{
X ′v,e|X ′′v,e 7→ Xv,e | e ∈ E, src(v, e) ∨ snk(v, e)

}
The order of the nodes in w has been showed by Kokash et al.[7] to be irrelevant,

i.e., the process P (w′), where w′ is the result of applying a permutation to the

string w, is bisimilar to P (w).

In Example 2.7 we can find an example application of P .

Example 2.7. Consider the Reo connector in Fig. 2.9, with nodes v1, v2, v3, v4

and channels f1, l1, s1, s2, e1, and e2. We abstract from the connector prior to

e1 and posterior to e2, including these channels. The processes for each channel

are:

Chan(f1) = X ′′v1,f1 . X
′′
v3,f1 . Chan(f1)

Chan(l1) = X ′′v1,l1 + X ′′v1,l1 |X
′′
v2,l1 . Chan(l1)

Chan(s1) = X ′′v2,s1 |X
′′
v4,s1 . Chan(s1)

Chan(s2) = X ′′v3,s2 |X
′′
v4,s2 . Chan(s2)

And using the Node function, we get the processes for each node:

Node(v1) = X ′v1,e1 |X
′
v1,l1 |X

′
v1,f1 . Node(v1)

Node(v2) = X ′v2,l1 |X
′
v2,s1 . Node(v2)

Node(v3) = X ′v3,f1 |X
′
v3,s2 . Node(v3)

Node(v4) = (X ′v4,s1 |X
′
v4,e1 + X ′v4,s2 |X

′
v4,e1) . Node(v4)
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We can now incrementally build the process for our connector, using the string

of nodes v1 . v2 . v3 . v4:

P (v1) = ∂Hv1 (ΓCv1 (Node(v1) ‖ Chan(e1) ‖ Chan(f1) ‖ Chan(l1)))

Hv1 =
{
X ′v1,e1 , X

′′
v1,e1 , X

′
v1,f1 , X

′′
v1,f1 , X

′
v1,l1 , X

′′
v1,l1

}
Cv1 =

{
X ′v1,e1 |X

′′
v1,e1 7→ Xv1,e1 , X

′
v1,f1 |X

′′
v1,f1 7→ Xv1,f1 , X

′
v1,l1 |X

′′
v1,l1 7→ Xv1,l1

}

P (v1 . v2) = ∂Hv2 (ΓCv2 (P (v1) ‖ Node(v2) ‖ Chan(s1)))

Hv2 =
{
X ′v2,f1 , X

′′
v2,f1 , X

′
v2,s1 , X

′′
v2,s1

}
Cv2 =

{
X ′v2,f1 |X

′′
v2,f1 7→ Xv2,f1 , X

′
v2,s1 |X

′′
v2,s1 7→ Xv2,s1

}

P (v1 . v2 . v3) = ∂Hv3 (ΓCv3 (P (v1 . v2) ‖ Node(v3) ‖ Chan(s2)))

Hv3 =
{
X ′v3,l1 , X

′′
v3,l1 , X

′
v3,s2 , X

′′
v3,s2

}
Cv3 =

{
X ′v3,l1 |X

′′
v3,l1 7→ Xv3,l1 , X

′
v3,s2 |X

′′
v3,s2 7→ Xv3,s2

}

P (v1 . v2 . v3 . v4) = ∂Hv4 (ΓCv4 (P (v1 . v2 . v3) ‖ Node(v4) ‖ Chan(e2)))

Hv4 =
{
X ′v4,s1 , X

′′
v4,s1 , X

′
v4,s2 , X

′′
v4,s2 , X

′
v4,e2 , X

′′
v4,e2

}
Cv4 =

{
X ′v4,s1 |X

′′
v4,s1 7→ Xv4,s1 , X

′
v4,s2 |X

′′
v4,s2 7→ Xv4,s2 , X

′
v4,e2 |X

′′
v4,e2 7→ Xv4,e2

}

2.3.2 Correctness of the Translation

The correctness of the encoding of Reo connectors given by function P is proved

by defining an encoding of PA into mCRL2 processes, named proc, and showing

that the later encoding is sound in terms of the algebraic structure of processes,

while the reader is encouraged to verify that the proc encoding, followed by

the encoding of Reo connectors into PA is equivalent to the P function defined

previously. We will present the encoding of PA into mCRL2 and the Theorem

4.1 of [7], with relevance to later work presented in this document. Furthermore

we present in Theorem 2.1 that the encoding of PA into mCRL2 is sound in

regard to strong bisimulation. In these proofs we consider port automata with

disjoint port names, without loss of generality.
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Let A = (Q,N ,→, q0) be a port automata. For any state q ∈ Q,

proc(A, q) = (
∑
q
N−→r

A . proc(A, r)) + δ,

where A = ⊗a∈Na.

Example 2.8. The following port automata are matched by the respective

results of the proc function:

q0 q1

{a}

{b}

A1

proc(A1, q0) = a . proc(A1, q1)

proc(A1, q1) = b . proc(A1, q0)

q0 {a}

{a, b}

A2

proc(A2, q0) = (a + a|b) . proc(A2, q0)

Consider two PA A1 = (Q1,N1,→1, q
1
0), and A2 = (Q2,N2,→2, q

2
0), and

a new set of ports N such that all three set of ports N ,N1, and N2 are disjoint.

A port synchronisation function γ : N 7→ N1×N2, is a pair of injective functions

γ1 : N 7→ N1, and γ2 : N 7→ N2, such that γ(n) = (γ1(n), γ2(n)).2

Given γ, and N1 ⊆ N1, N2 ⊆ N2, we define the N1 |γ N2 as the union

N1 ∪N2, but replacing n1 ∈ N1 by n ∈ N , such that γ1(n) = n1, and n2 ∈ N2

by n ∈ N , such that γ2(n) = n2. Notice that since γ1, and γ2 are not neces-

sarily bijective, not every element of N1 and N2 is necessarily replaced. Then,

we define A1 ./γ A2 = (Q1 × Q2,N1 |γ N2,→, (q1
0 , q

2
0)), where the transition

relation → is given by:

q1
N1−−→1 p1 q2

N2−−→2 p2

γ−1
1 [N1] = γ−1

2 [N2]

(q1, q2)
N1|γN2−−−−−→ (p1, p2)

q1
N1−−→1 p1

γ−1
1 [N1] = ∅

(q1, q2)
N1−−→ (p1, q2)

q2
N2−−→2 p2

γ−1
2 [N2] = ∅

(q1, q2)
N2−−→ (q1, p2)

2In the case of the encoding P , for a node v and a channel e, γ(Xv,e) = (X′
v,e, X

′′
v,e).
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Furthermore, Kokash et al.[7] also defines the parallel composition with port

synchronization based on γ, ‖γ . So, for processes P1, P2, we define:

P1‖γP2 = ∂B(ΓC(P1‖P2))

where B = γ1(N ) ∪ γ2(N ), and C = {γ1(n)|γ2(n) 7→ n | n ∈ N}.

With these functions, Kokash et al.[7] showed in the Theorem 4.1 of [7] that

proc(A1, q
1
0)‖γproc(A2, q

2
0) ∼= proc(A1 ./γ A2, (q

1
0 , q

2
0)).

The result proves the soundness of the encoding in terms of parallel compo-

sition of processes with action synchronisation.

We want to take the correctness a little further, and show that not only is

the proc function sound, but it preserves the bisimulation of port automata, in

the process algebra.

Theorem 2.1 (Preservation of Equivalence). Let A1 = (Q1,N1,→1, q0,1),

A2 = (Q2,N2,→2, q0,2) be two port automata, such that A1
∼= A2. Then

proc(A1, q0,1) ∼= proc(A2, q0,2).

Proof. Let R ⊆ Q1 × Q2 be a bisimulation between A1 and A2. We define

R′ = {(proc(A1, qi,1), proc(A2, qj,2)) | (qi,1, qj,2) ∈ R}. We want to prove that

R′ is a bisimulation between process algebras, i.e., for all qi ∈ Q1 and for all

qj ∈ Q2:

1. if (proc(A1, qi), proc(A2, qj)) ∈ R′ and proc(A1, qi)
a−→ P then there exists

a process Q s.t. (proc(A2, qj)
a−→ Q and (P,Q) ∈ R′

2. if (proc(A1, qi), proc(A2, qj)) ∈ R′ and proc(A2, qj)
a−→ Q then there exists

a process P s.t. (proc(A1, qi)
a−→ P and (P,Q) ∈ R′

We will focus only on 1, as the proof for 2 would follow the same steps.

Since (proc(A1, qi), proc(A2, qj)) ∈ R′, then (qi, qj) ∈ R. Furthemore,

because proc(A1, qi)
a−→ P and by definition of proc, there exists si ∈ Q1

such that qi
N−→ si, and a = ⊗n∈N n. Moreover, P = proc(A1, si). Be-

cause A1
∼= A2, there exists sj ∈ Q2 such that qj

N−→ sj , and therefore,

proc(A2, qj)
a−→ proc(A2, sj). Put Q = proc(A2, qj).
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By definition of R′, we have (proc(A1, si), proc(A2, sj)) ∈ R′, since (si, sj) ∈

R. That is, (P,Q) ∈ R′ as required. This concludes the proof that R′ is a

bisimulation

Since R is a bisimulation between A1 and A2, (q0,1, q0,2) ∈ R. Then, by

definition of R′, (proc(A1, q0,1), proc(A2, q0,2)) ∈ R′. Since R′ is a bisimulation,

(proc(A1, q0,1) ∼= proc(A2, q0,2)).

With this lemma, we guarantee that proc is a morphism preserving equality

relation of port automata in the corresponding processes.
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Chapter 3

Connector Calculus for Reo

In Chapter 2 we presented the Reo coordination language, with a port automata

semantics, the mCRL2 toolset, and the encoding of Reo connectors in mCRL2,

presented in [7]. This chapter presents a calculus of Reo connectors, defined

by Proença and Clarke [8]. The core calculus is a monoidal category, whose

primitive elements are Reo channels composed sequentially or with a tensor

product. The core calculus is extended with parameters to form families of

connectors, from which we abstract in the chapter.

The main focus of this chapter is the creation of an encoding of the core

calculus into mCRL2, inspired by the encoding presented in Chapter 2. To

achieve this, we translate the semantics of the calculus, originally defined by

the tile model [4], into an equivalent port automata semantics, which we adapt

into an mCRL2 encoding.

This chapter begins by presenting the syntax of the core calculus, and the

original semantics using the tile model (Sections 3.1 and 3.2). Following this,

we present a translation of the tile semantics into port automata, accompanied

by a proof of correctness for the translation (Section 3.3). Finally we present an

mCRL2 encoding and respective proof of correctness, supported by the trans-

lation presented in Chapter 2 (Section 3.4).
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c ::= idn identities

| γn,m symmetries

| p ∈ P primitive connectors

| c1 ; c2 sequential composition

| c1 ⊕ c2 parallel composition

| Trn(c) traces (feedback loops)

p ∈ P ::= ∆n duplicator into n ports

| ∇n merger of n inputs

| drain synchronous drain

| fifo buffer

| . . . user-defined connectors

Figure 3.1: Grammar for core connectors, where n,m ∈ N.

3.1 Syntax

We present the basic syntax in Fig. 3.1. Our syntax is a simplification of the

original syntax, where we use natural numbers to represent the input ant output

ports of the connectors, representing the sum of the tensors used in [8]. The

type of a connector represents the input ports and output ports of the connector.

Ports are the equivalent to channel ends in Reo, where input ports represent

source ends, and output ports represent sink ends. Intuitively, each connector

has a sequence of input ports and a sequence of output ports, which we number

incrementally from 1.

The primitive elements of our calculus are Reo channels with some modifica-

tions. The primitive id1 is equivalent to the sync channel of Reo, while idn

represents n id1 primitives, with no common input/output ports (in this case

we say they are in parallel). The primitive ∆n presents a replicator with n

output ports, which replicates the data received by the input port into all the

output ports instantly. The ∇n contains n input ports, and, when an input port

contains data to be received by the primitive, it copies the respective data to

the output port.

We combine primitives using sequential and parallel composition. Compos-

ing two connectors sequentially c1; c2 means connecting the i-th sink port c1 to

the i-th source port of c2, for every sink port of c1 and source port of c2; com-

posing connectors in parallel c1 ⊕ c2 means combining all source and sink ports

of both c1 and c2; wrapping a connector c by a trace over n means connecting

the last n sink ports of c to its last n source ports.

In Fig. 3.2 the reader can find small examples with the respective graphical
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id1 ; fifo :
1→ 1

drain :
2→ 0

γ2,1 :
3→ 3

(id1 ⊕ fifo) ;∇2 :
2→ 1

Tr1(γ1,1) :
2→ 1

Figure 3.2: Connectors, their interfaces, and their visualization.

representations, where each example contains (1) a connector on top, (2) its

interfaces in the middle, and (3) its visual representation below depicting inputs

on the left and outputs on the right. In Example 3.1, we present two connectors

with similar behaviour, which we demonstrate later in this chapter.

Example 3.1. Consider the following examples:

fifo1 ; lossy :
1→ 1

Tr1(γ1,1 ; lossy ⊕ fifo) :
2→ 1

The connector on the left presents a simple fifo connected sequentially to

a lossy. The right connector presents a different approach to the connector

on the left. Using the Tr1( ) operator, we connect the second input port of

γ1,1, to the output port of the fifo. Since γ1,1 is composed of id1 primitives,

with abstractable behaviour except for the order of outputs (id1 is the identity

of the sequential composition), this connector behaves as if the fifo is directly

connected to the lossy, as we can see in the graphical representation.

3.2 Tile Semantics

The semantics of Reo connectors, written using this calculus, uses the Tile

Model [4], following the original publication of this calculus [8]. A tile consists

of 4 objects, which, in the case of this semantic model, are natural numbers

representing the input and output ports of a connector. A tile also consists of

horizontal and vertical morphisms which are objects from a category H and V

respectively. The horizontal morphisms describe the construction of the connec-

tor, while the vertical morphisms describe the progress in time of the connector.

More concretely, the horizontal morphisms are connectors specified by Fig. 3.1,
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and the vertical tiles are either fl, nofl, or a tensor product of these. Visually,

we represent each tile as a square, where the objects are the corners, the hor-

izontal morphisms are arrows from left to right between pairs of objects, and

the vertical morphisms are arrows from top to bottom between pairs of objects.

Example 3.2. The tile

1

1

1

1

noflfl

describes a transition of the primitive fifo, such that data flows through the

input port, and no data flows through the output port. Furthermore, after

the transition, the fifo becomes a fifofull primitive. We can represent the tiles

simply as fifo
fl−−→

nofl
fifofull. We will use this simple representation as our standard

notation throughout this document.

3.2.1 Tiles of Primitive Connectors

To fully describe the behaviours of a connector using tiles, we need a set, such

that each element describes one of the possible behaviours. In Fig. 3.3 we define

the set of tiles for each primitive.

3.2.2 Tile Composition

We can compose tiles to specify more complex connectors in three ways: horizon-

tally (;) , vertically (◦), and in parallel (⊕). Tiles can be composed horizontally

if the left and right morphisms match respectively; they can be composed ver-

tically if the down and up morphisms match respectively, and they can always

be composed in parallel. The formal compositions are defined below:

c1
v1−→
v
c2 ; c′1

v−→
v2

c′2 = (c1; c′1)
v1−→
v2

(c2; c′2) (horizontal)

c1
v1−→
v2

c ◦ c v′1−→
v′2

c2 = c1
v′1◦v1−→
v′2◦v2

c2 (vertical)

c1
v1−→
v2

c2 ⊕ c′1
v′1−→
v′2

c′2 = c1 ⊕ c2
v1⊕v′1−→
v2⊕v′2

c′1 ⊕ c′2 (parallel)
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id1 =

{
id1

fl−→
fl

id1 , id1
nofl−→
nofl

id1

}
γ1,1 =

{
γ1,1

fl⊕nofl−→
nofl⊕fl

γ1,1 , γ1,1
nofl⊕fl−→
fl⊕nofl

γ1,1 , γ1,1
fl⊕fl−→
fl⊕fl

γ1,1 , γ1,1
nofl⊕nofl−→
nofl⊕nofl

γ1,1

}
∆2 =

{
∆2

fl−→
fl⊕fl

∆2 , ∆2
nofl−→

nofl⊕nofl
∆2

}
∇2 =

{
∇2

fl⊕nofl−→
fl
∇2 , ∇2

nofl⊕fl−→
fl
∇2 , ∇2

nofl⊕nofl−→
nofl

∇2

}
drain =

{
drain

fl−→
fl

drain , drain
nofl−→
nofl

drain

}
lossy =

{
lossy

fl−→
fl

lossy , lossy
fl−→

nofl
lossy , lossy

nofl−→
nofl

lossy

}
fifo =

{
fifo

fl−→
nofl

fifofull , fifo
nofl−→
nofl

fifo

}
fifofull =

{
fifofull

nofl−→
fl

fifo , fifofull
nofl−→
nofl

fifofull

}

Figure 3.3: Behaviour of primitive connectors using tiles.

Furthermore, given a connector c1, and a natural number n, the behaviour

of the trace connector Trn(c1) is defined by:

Trn(c1) ={Trn(c1)
v1−→
v2

Trn(c2) | ∃(v : n→ n ∈ V) . c1
v1⊕v−→
v2⊕v

c2 exists} (trace)

3.2.3 Bisimulation of Tiles

We define the relation of bisimulation between tiles using the one presented by

Gadducci and Montanari [4]:

Definition 3.1. Consider the relation R ⊆ H×H. We say that R is a bisimu-

lation if ∀s, t ∈ H:

1. s
a−→
b
s′ ∧ (s, t) ∈ R ⇒ ∃t′∈H s.t. t

a−→
b
t′ ∧ (s′, t′) ∈ R;

2. t
a−→
b
t′ ∧ (s, t) ∈ R ⇒ ∃s′∈H s.t. s

a−→
b
s′ ∧ (s′, t′) ∈ R

given a, b ∈ V.

Given s, t ∈ H, we say that s is bisimilar to t (notation: s ∼= t) iff there is a

bisimulation R such that (s, t) ∈ R.
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We present the tiles for the connectors presented in Example 3.1, as example

of bisimilar connectors, in Examples 3.3 and 3.4. Since these connectors contain

a fifo primitive and there are two set of tiles to fully describe the behaviour (fifo,

fifofull), we present the two sets.

Example 3.3. Consider the connector defined by fifo; lossy. The tiles for the

individual processes are defined in Fig. 3.3. Using the horizontal composition

of tiles, the resulting set of tiles for the connector is:

fifo ; lossy =

{
fifo; lossy

fl−→
nofl

fifofull; lossy , fifo; lossy
nofl−→
nofl

fifo; lossy

}
fifofull ; lossy =

{
fifofull; lossy

nofl−→
fl

fifo; lossy , fifofull; lossy
nofl−→
nofl

fifo; lossy ,

fifofull; lossy
nofl−→
nofl

fifofull; lossy

}
Example 3.4. Consider the connector defined by c = Tr1(γ1,1 ; lossy ⊕ fifo).

With the tiles presented in Fig. 3.3 we incrementally build the tiles for c. We

begin by presenting the tiles for c1 = lossy ⊕ fifo, and c2 = lossy ⊕ fifofull, using

the parallel composition:

c1 =

{
c1

fl⊕fl−→
fl⊕nofl

c2 , c1
fl⊕fl−→

nofl⊕nofl
c2 , c1

nofl⊕fl−→
nofl⊕nofl

c2 , c1
fl⊕nofl−→
fl⊕nofl

c1 , c1
fl⊕nofl−→

nofl⊕nofl
c1 , c1

nofl⊕nofl−→
nofl⊕nofl

c1

}
c2 =

{
c2

fl⊕nofl−→
fl⊕nofl

c2 , c2
fl⊕nofl−→

nofl⊕nofl
c2 , c2

nofl⊕nofl−→
nofl⊕nofl

c2 , c2
fl⊕nofl−→

fl⊕fl
c1 , c2

fl⊕nofl−→
nofl⊕fl

c1 , c2
nofl⊕nofl−→

nofl⊕fl
c1

}
Using these sets, we can build c3 = γ1,1; lossy ⊕ fifo, and c4 = γ1,1; lossy ⊕

fifofull, by applying the horizontal composition:

c3 =

{
c3

fl⊕fl−→
fl⊕nofl

c4 , c3
fl⊕fl−→

nofl⊕nofl
c4 , c3

fl⊕nofl−→
nofl⊕nofl

c4 , c3
nofl⊕fl−→
fl⊕nofl

c3 , c3
nofl⊕fl−→

nofl⊕nofl
c3 , c3

nofl⊕nofl−→
nofl⊕nofl

c3

}
c4 =

{
c4

nofl⊕fl−→
fl⊕nofl

c4 , c4
nofl⊕fl−→

nofl⊕nofl
c4 , c4

nofl⊕nofl−→
nofl⊕nofl

c4 , c4
nofl⊕fl−→

fl⊕fl
c3 , c4

nofl⊕fl−→
nofl⊕fl

c3 , c4
nofl⊕nofl−→

nofl⊕fl
c3

}
Finally, we can build c, and c′ = Tr1(γ1,1 ; lossy ⊕ fifofull), using the trace

rule:

c =

{
c

fl−→
nofl

c′ , c
nofl−→
nofl

c

}
c′ =

{
c′

nofl−→
nofl

c′ , c′
nofl−→

fl
c , c′

nofl−→
nofl

c

}
To prove the bisimilarity of the previous examples, we consider the sets of

tiles. Let R = {(fifo; lossy, c), (fifofull; lossy, c′)}. It can easily be seen that R is

a bisimulation. Therefore fifo; lossy ∼= c.
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3.3 Connectors as Port Automata

We now define a semantic model for the calculus of connectors using port au-

tomata, and address its correctness.

Our port automata follow the definitions presented in Chapter 2. Further-

more, we define port substitution of a by b in an automaton A = (Q,N,→, q0)

as the automaton A{a 7→b} = (Q,N{a 7→b} , 99K, q0), where qi
X{a 7→b}
99K qj iff

qi
X−→ qj , and X{a 7→b} denotes the set X replacing a by b.

3.3.1 Encoding Primitives as Port Automata

Recall that the semantics of the Core Calculus is given by the Tiles model, where

a tile c1
src−→
snk

c2 means that the connector c1 can evolve to a new state given by

the connector c2, by firing its source ports based on src and its sink ports based

on snk . Here src and snk are morphisms built by composing simpler morphisms

fl and nofl, indicating which ports have flow and no flow.

The encoding of a connector c into a PA is written as PA(c), defined below.

Each port is a pair (n, s) where n ∈ N is the order number of its source or sink

node, and s ∈ {sr, sk,mx} is a constant that marks it as being a source (sr),

sink (sk), or mixed (mx) port. The latter is a temporary marking used when

composing port automata (defined below).

Definition 3.2 (Tiles of a connector). Given a core connector c, we write T (c)

to represent all tiles for c and for the reachable states from c. Formally, T (c) is

the smallest set such that, for every tile t =

(
c

sr−→
sk

c′
)

we have that t ∈ T (c)

and T (c′) ⊆ T (c).

Definition 3.3 (Reachable connectors). Given a connector c, we write Reach(c)

to represent all reachable connectors from c, i.e., Reach(c) is the smallest set such

that c ∈ Reach(c), and for every tile c
sr−→
sk

c′ we have that Reach(c′) ⊆ Reach(c).

Definition 3.4 (Encoding PA(c)). Let c be a connector from n to m, and ` a

unique identifier. Its port automaton PA(c) is (Q,N,→, q0) where

• Q = Reach(c)

• N = {(i, sr) | i ∈ {1 . . . n}} ∪ {(j, sk) | j ∈ {1 . . .m}}
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a b

id1 q0

{a, b} a b

lossy q0

{a, b}

{a}

a

b
c

∇2
q0

{a, c}

{b, c}

a b

drain q0

{a, b} a b

fifo

q0 q1

{a}

{b}

b
c

a

∆2
q0

{a, b, c}

Figure 3.4: Port Automata of primitive connectors.

• q Xsr∪Xsk−−−−−→ q′ ⇔ ∃t ∈ T (c) : t = c1
src−→
snk

c2 ∧

Xsr = {(i, sr) | src = v1 ⊕ · · · ⊕ vn, i ∈ {1 . . . n}, vi = fl}

Xsk = {(i, sk) | snk = v1 ⊕ · · · ⊕ vm, j ∈ {1 . . .m}, vj = fl}

For example, the fifo primitive can be encoded as PA(fifo) = ({fifo, fifofull},

{(1, sr), (1, sk)},→, fifo), where

fifo
(1,sr)−−−→ fifofull fifofull

(1,sk)−−−→ fifo fifo
∅−→ fifo fifofull

∅−→ fifofull.

In Fig. 3.4 we present example port automata of channels commonly found

in the literature, and the respective primitive of our calculus.

3.3.2 Composing Port Automata for Connectors

Excluding the case of the trace operation, the port automata of two connectors

are composed using the product operation ./ with port renaming to fit our

definition of PA(c). More precisely, we define ./;, and ./⊕ to define the composi-

tion through the sequential and parallel operations respectively. The mark mx

marks the ports that are no longer source or sink, and is used for synchronisation

purposes.

Definition 3.5. Let c1, c2 be two connectors, such that, there exist n,m, l,

naturals, such that c1 : n→ l, and c2 : l→ m. Let

A1= PA(c1) = (Q1,N1,→1, q1) A2= PA(c2) = (Q2,N2,→2, q2)

be their respective port automata. We defineA1 ./; A2 = (A1σ1 ./ A2σ2)\X,

where σ1, σ2 and X define port renamings and hiding of ports that mimic the
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connecting of ports from c1 to c2:

σ1 = {(i, sk) 7→(i,mx) | (i, sk) ∈ N1}

σ2 = {(i, sr) 7→(i,mx) | (i, sr) ∈ N2}
X = {(i,mx) | (i, sk) ∈ N1}

Definition 3.6. Let c1, c2 be two connectors, such that, for i ∈ 1, 2, ci : ni →

mi, and Ai = PA(ci) = (Qi,Ni,→i, qi). We define A1 ./⊕ A2 = A1 ./ (A2σ)

where σ defines the port renaming:

σ = {(i, sr) 7→(i+ n1, sr) | (i, sr) ∈ N2}

∪ {(j, sk) 7→(j +m1, sk) | (j, sk) ∈ N2}

We define the trace operator for port automata as follows:

Definition 3.7. Let c1 : m1 → m2 a connector, andA1 = PA(c1) = (Q1,N1,→1

, q1) its port automata. Let n ∈ N, such that n ≤ m1, and n ≤ m2. We define

Trn(A1) = (Q1,N1\X,→Tr, q1), where

X = {(m1 − i, sr) | 0 ≤ i ≤ n− 1} ∪ {(m2 − i, sk) | 0 ≤ i ≤ n− 1}

q
K\X−−−→Tr q

′ iff q
K−→ q′ ∧ ∀i∈{0...n−1}(m1 − i, sr) ∈ K ⇔ (m2 − i, sk) ∈ K

The following examples provide an incremental build of the port automata

for the connector Tr1(γ1,1; fifo ∗ lossy) presented in Example 3.4. Notice that

the final PA is bisimilar to PA(Tr1(γ1,1; fifo ∗ lossy)). This property is the main

topic of Section 3.3.3.

Example 3.5 (PA(fifo) ./⊕ PA(lossy)). Consider the port automata

• PA(fifo) = ({fifo, fifofull}, {(1, sr), (1, sk)},→1, fifo), and

• PA(lossy) = ({lossy}, {(1, sr), (1, sk)},→2, lossy)

where

fifo
(1,sr)−−−→1 fifofull fifofull

(1,sk)−−−→1 fifo fifo
∅−→1 fifo fifofull

∅−→1 fifofull

lossy
(1,sr)−−−→2 lossy lossy

(1,sr),(1,sk)−−−−−−−→2 lossy lossy
∅−→2 lossy

The port automata PA(fifo) ./⊕ PA(lossy) = PA(fifo) ./ (PA(lossy)σ), where

σ = {(1, sr) → (2, sr), (1, sk) → (2, sk)}, and is described graphically (without

empty transitions) by:
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(f, l) (ff, l)

{(1, sr)}

{(1, sr), (2, sr)}

{(1, sr), (2, sr), (2, sk)}

{(1, sk)}

{(1, sk), (2, sr)}

{(1, sk), (2, sr), (2, sk)}

{(2, sr), (2, sk)}

{(2, sr)}

{(2, sr), (2, sk)}}

{(2, sr)}

Example 3.6 (PA(γ1,1) ./; (PA(fifo) ./⊕ PA(lossy))). Consider the automaton

created in the previous example, and the automaton

• PA(γ1,1) = ({γ}, {(1, sr), (1, sk), (2, sr), (2, sk)},→, γ),

where

γ
(1,sr),(2,sk)−−−−−−−→ γ γ

(2,sr),(1,sk)−−−−−−−→ γ γ
(1,sr),(2,sk),(2,sr),(1,sk)−−−−−−−−−−−−−−→ γ γ

∅−→ γ

Following the definition of ./;, the port automaton PA(γ1,1) ./; (PA(fifo) ./⊕

PA(lossy)) = ((PA(γ1,1)σ1) ./ (PA(fifo) ./⊕ PA(lossy)σ2)) \X, where

σ1 = {(1, sk)→ (1,mx), (2, sk)→ (2,mx)}

σ2 = {(1, sr)→ (1,mx), (2, sr)→ (2,mx)}
X = {(1,mx), (2,mx)}

and is described graphically (without empty transitions) by:

(γ, f, l) (γ, ff, l)

{(2, sr)}

{(2, sr), (1, sr)}

{(2, sr), (1, sr), (2, sk)}

{(1, sk)}

{(1, sk), (1, sr)}

{(1, sk), (1, sr), (2, sk)}

{(1, sr), (2, sk)}

{(1, sr)}

{(1, sr), (2, sk)}}

{(1, sr)}

Example 3.7 (Tr1(PA(γ1,1) ./; PA(lossy) ./⊕ PA(fifo))). Consider the automa-

ton of the previous example. The port automaton Tr1(PA(γ1,1) ./; PA(lossy) ./⊕

PA(fifo)) is described graphically (without empty transitions) by:
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q0 q1

{(2, sr), (1, sr), (2, sk)}

{(1, sk)}

{(1, sk), (1, sr)}

{(1, sr)} {(1, sr)}

3.3.3 Correctness of PA(c)

We say our encoding is correct with respect to an automatonA if PA(c) ∼= A. We

begin our proof by showing that PA(c) preserves the bisimulation equivalence

of the tile semantics. We then proceed to use an inductive argument to prove

the preservation of the structure of PA(c) with respect to the operations defined

in the previous section. We show that (1) the encodings of primitive channels

from Fig. 3.4 are correct with respect to the automata from PA(c), and (2) the

encoding of a connector built with the sequential, parallel, or trace operators is

correct with respect to ./;, ./⊕, and Trn(c) respectively.

For simplicity, we ignore all reflexive transitions with empty sets as labels

in PA(c), which must exist for all primitive connectors – because the Port Au-

tomata semantics assumes that connectors can decide not to have data flow and

remain in the same state.

Lemma 3.1 (Preservation of Equivalence). Let c1, c2 ∈ H, be two connectors

(horizontal morphisms). If c1 ∼= c2, then PA(c1) ∼= PA(c2).

Proof. Let R ⊆ H×H be a bisimulation, such that, (c1, c2) ∈ R. Let

P1 = PA(c1) = (Q1,N1,→1, q1)

P2 = PA(c2) = (Q2,N2,→2, q2)

be the respective PA of the connectors c1, and c2. Let R′ ⊆ Q1 × Q2 =

{(ci, cj) | (ci, cj) ∈ R}. We want to prove that R′ is a bisimulation, i.e., for all

c ∈ Q1, and d ∈ Q2:

1. c
N−→ x ∧ (c, d) ∈ R′ ⇒ ∃y∈Q2

s.t. d
N−→ y ∧ (x, y) ∈ R′;

2. d
N−→ y ∧ (c, d) ∈ R′ ⇒ ∃x∈Q1

s.t. c
N−→ x ∧ (x, y) ∈ R′.

We focus our proof in 1, as 2 is analogous.
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Let c
N−→ x. By definition of PA(c1), there exists c

a−→
b
x ∈ T (c1), s.t.,

N = Xsr∪Xsk, where Xsr = {(i, sr) | a = v1⊕· · ·⊕vn, i ∈ {1 . . . n}, vi = fl}, and

Xsk = {(i, sk) | b = v1 ⊕ · · · ⊕ vm, j ∈ {1 . . .m}, vj = fl}. Then, by definition of

tile bisimulation and because (c, d) ∈ R′ implies (c, d) ∈ R, d
a−→
b
y ∈ T (c2), and

(x, y) ∈ R. Therefore d
N−→ y, and (x, y) ∈ R′.

Thus, PA(c1) ∼= PA(c2).

Lemma 3.1 shows that bisimilar connectors generate bisimilar port automata,

following our encoding. For example, consider the connectors of Examples 3.3

and 3.4. Since we showed that the respective tiles of these connectors are bisim-

ilar, we have no need to find a relation between their encoded port automata,

to know that they are bisimilar.

Lemma 3.2 (Correctness of primitive’s encodings). Any primitive from Fig. 3.3

is correct w.r.t. its corresponding automaton from Fig. 3.4, after renaming ports

in the latter to follow the same convention as in the encoding (e.g., (1, sr) instead

of a).

Proof. We will only show that this lemma holds for one of the connectors, the

fifo, because the other connectors can be shown in a similar way. Recall that

after Definition 3.4 we defined PA(fifo) as an example. The resulting automaton

has 4 transitions, and after ignoring the reflexive and empty transitions only two

remain. Recall also the port automaton of the fifo in Fig. 3.4. It is enough to

observe that R = {〈fifo, q0〉, 〈fifofull, q1〉} is a strong bisimulation between the

two automata, after replacing a by (1, sr) and b by (1, sk).

Lemma 3.3 (Correctness of PA(c1; c2)). Let c1 : n1 → n2, c2 : m1 → m2 be

two connectors. If PA(c1) and PA(c2) are correct with respect to A1 and A2,

respectively, and c1; c2 is well-typed, i.e., n2 = m1, then PA(c1; c2) is correct

with respect to A1 ./; A2,

Proof. Let A1 = (Q1, N1,→1, q1), A2 = (Q2, N2,→2, q2), PA(c1) = (Q3, N3,→3

, q3), and PA(c2) = (Q4, N4,→4, q4). Let R1 ⊆ Q3 ×Q1, and R2 ⊆ Q4 ×Q2 be

bisimulations. We show that PA(c1; c2) is correct with respect to A1 ./; A2 by

showing that the relation

R = {(x; y, (x′, y′)) | x; y ∈ Reach(c1; c2), (x, x′) ∈ R1, (y, y′) ∈ R2}
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is a bisimulation, i.e.:

1. ∀p∈Reach(c1;c2) p
K−→ p′ ∧ (p, q) ∈ R⇒ ∃q′∈Q1×Q2

q
K−→ q′ ∧ (p′, q′) ∈ R;

2. ∀q∈Q1×Q2
q
K−→ q′ ∧ (p, q) ∈ R⇒ ∃p′∈Reach(c1;c2) p

K−→ p′ ∧ (p′, q′) ∈ R;

1.

Consider a transition (x; y)
K−→ (x′; y′) in PA(c1; c2), with (x; y, (p, q)) ∈ R,

where (p, q) ∈ Q1 ×Q2.

Then there exists x; y
sr−→
sk

x′; y′ in T (c1; c2), such that K = {(i, sr) | sr =

v1 ⊕ · · · ⊕ vn1 , i ∈ {1 . . . n1}, vi = fl} ∪ {(i, sk) | sk ′ = v1 ⊕ · · · ⊕ vm2 , i ∈

{1 . . .m2}, vi = fl}.

By definition, there exist x
sr−→
v

x′ in T (c1) and y
v−→
sk

y′ in T (c2), and,

therefore, there exist p
K1−−→ p′ in A1 and q

K2−−→ q′ in A2 such that, K1 =

{(i, sr) | sr = v1⊕· · ·⊕vn1
, i ∈ {1 . . . n1}, vi = fl}∪{(i, sk) | v = v1⊕· · ·⊕vn2

, i ∈

{1 . . . n2}, vi = fl}, and K2 = {(i, sr) | v = v1 ⊕ · · · ⊕ vn2 , i ∈ {1 . . . n2}, vi =

fl} ∪ {(i, sk) | sk ′ = v1 ⊕ · · · ⊕ vm2 , i ∈ {1 . . .m2}, vi = fl}. By definition of R,

(x, p), (x′, p′) ∈ R1, and (y, q), (y′, q′) ∈ R2, and therefore, (x′; y′, (p′, q′)) ∈ R.

Furthermore, there is a transition (p; q)
K′

−−→ (p′; q′) in A1 ./; A2, where

K ′ = ((K1σ1 ∪K2σ2) \X) = (({(i, sr) | sr = v1 ⊕ · · · ⊕ vn1 , i ∈ {1 . . . n1}, vi =

fl} ∪ {(i, sk) | v = v1 ⊕ · · · ⊕ vn2 , i ∈ {1 . . . n2}, vi = fl})σ1 ∪ ({(i, sr) | v =

v1 ⊕ · · · ⊕ vn2
, i ∈ {1 . . . n2}, vi = fl} ∪ {(i, sk) | sk ′ = v1 ⊕ · · · ⊕ vm2

, i ∈

{1 . . .m2}, vi = fl})σ2) \X) = {(i, sr) | sr = v1 ⊕ · · · ⊕ vn1
, i ∈ {1 . . . n1}, vi =

fl} ∪ {(i, sk) | sk ′ = v1 ⊕ · · · ⊕ vm2 , i ∈ {1 . . .m2}, vi = fl} = K

Therefore R is a bisimulation, and 1. is valid.

2.

Consider a transition (p, q)
K−→ (p′, q′) in A1 ./; A2, and let (x; y, (p, q)) ∈ R,

for x; y ∈ Reach(c1; c2).

Then, one of these cases must be true:

1. ∃p K1−−→ p′ in A1, K1σ1 ∩N2σ2 = ∅, and K = (K1σ1) \X

2. ∃q K2−−→ q′ in A2, K2σ2 ∩N1σ1 = ∅, and K = (K1σ2) \X

3. ∃p K1−−→ p′ in A1 and ∃q K2−−→ q′ in A2, such that, k1σ1∩N2σ2 = k2σ2∩N1σ1,

and K = (((K1σ1) ∪ (K2σ2)) \X)
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Furthermore, by definition of R, (x, p) ∈ R1, and (y, q) ∈ R2. Therefore,

and by definition of PA(c):

1. ∃x sr−→
nofl⊕...⊕nofl

x′ in T (c1) and ∃y nofl⊕...⊕nofl−→
nofl⊕...⊕nofl

y′ in T (c2), such that K1 =

{(i, sr) | sr = v1 ⊕ · · · ⊕ vn1
, i ∈ {1 . . . n1}, vi = fl}. So, K = K1, because

K1 ∩X = ∅, and ∀i∈N(i, sk) /∈ K1, meaning σ1 has no effect in K1.

2. ∃y nofl⊕...⊕nofl−→
sk

y′ in T (c2) and ∃x nofl⊕...⊕nofl−→
nofl⊕...⊕nofl

x′ in T (c1), such that K1 =

{(i, sk) | sr = v1 ⊕ · · · ⊕ vm2
, i ∈ {1 . . .m2}, vi = fl}. So, K = K2, because

K2 ∩X = ∅, and ∀i∈N(i, sr) /∈ K2.

3. ∃x sr−→
sk

x′ in T (c1) and ∃y sr′−→
sk′

y′ in T (c2), such that sk = sr′, K1 =

{(i, sr) | sr = v1 ⊕ · · · ⊕ vn1 , i ∈ {1 . . . n1}, vi = fl} ∪ {(i, sk) | sk = v1 ⊕

· · ·⊕vn2 , i ∈ {1 . . . n2}, vi = fl}, and K2 = {(i, sr) | sr ′ = v1⊕· · ·⊕vn2 , i ∈

{1 . . . n2}, vi = fl} ∪ {(i, sk) | sk ′ = v1 ⊕ · · · ⊕ vm2
, i ∈ {1 . . .m2}, vi = fl}.

So, K = ((K1σ1) ∪ (K2σ2)) \ X = ({(i, sr) | sr = v1 ⊕ · · · ⊕ vn1
, i ∈

{1 . . . n1}, vi = fl} ∪ {(i,mx) | sk = v1 ⊕ · · · ⊕ vn2 , i ∈ {1 . . . n2}, vi =

fl} ∪ {(i,mx) | sr ′ = v1 ⊕ · · · ⊕ vn2 , i ∈ {1 . . . n2}, vi = fl} ∪ {(i, sk) | sk ′ =

v1⊕· · ·⊕vm2
, i ∈ {1 . . .m2}, vi = fl})\X = {(i, sr) | sr = v1⊕· · ·⊕vn1

, i ∈

{1 . . . n1}, vi = fl} ∪ {(i, sk) | sk ′ = v1 ⊕ · · · ⊕ vm2
, i ∈ {1 . . .m2}, vi = fl}

By definition of bisimulation (x′, p′) ∈ R1, and (y′, q′) ∈ R2, and thus, by

definition of R, (x′; y′, (p′, q′)) ∈ R.

By the composition of tiles we have:

1. ∃x; y
sr−→

nofl⊕...⊕nofl
x′; y′ in T (c1; c2)

2. ∃x; y
nofl⊕...⊕nofl−→

sk
x′; y′ in T (c1; c2)

3. ∃x; y
sr−→
sk′

x′; y′ in T (c1; c2)

Therefore

1. ∃(x; y)
K′

−−→ (x′; y′) in PA(c1; c2), where K ′ = {(i, sr) | sr = v1 ⊕ · · · ⊕

vn1
, i ∈ {1 . . . n1}, vi = fl} = K.

2. ∃(x; y)
K′

−−→ (x′; y′) in PA(c1; c2), where K ′ = {(i, sk) | sr = v1 ⊕ · · · ⊕

vm2 , i ∈ {1 . . .m2}, vi = fl} = K.
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3. ∃(x; y)
K′

−−→ (x′; y′) in PA(c1; c2), where K ′ = {(i, sr) | sr = v1 ⊕ · · · ⊕

vn1
, i ∈ {1 . . . n1}, vi = fl}∪{(i, sk) | sk ′ = v1⊕· · ·⊕vm2

, i ∈ {1 . . .m2}, vi =

fl} = ({(i, sr) | sr = v1 ⊕ · · · ⊕ vn1 , i ∈ {1 . . . n1}, vi = fl} ∪ {(i, sk) | sk ′ =

v1 ⊕ · · · ⊕ vm2 , i ∈ {1 . . .m2}, vi = fl}) = ({(i, sr) | sr = v1 ⊕ · · · ⊕ vn1 , i ∈

{1 . . . n1}, vi = fl} ∪ {(i, sk) | sk = v1 ⊕ · · · ⊕ vn2
, i ∈ {1 . . . n2}, vi =

fl})σ1∪(({(i, sr) | sr ′ = v1⊕· · ·⊕vn2
, i ∈ {1 . . . n2}, vi = fl}∪{(i, sk) | sk ′ =

v1 ⊕ · · · ⊕ vm2 , i ∈ {1 . . .m2}, vi = fl})σ1) \X = (K1 ∪ (K2σ)) \X)) = K.

Therefore, R is a bisimulation, and PA(c1; c2) is correct with respect to

A1 ./; A2.

Lemma 3.4 (Correctness of PA(c1 ⊕ c2)). If, for i ∈ {1, 2}, PA(ci) is correct

with respect to Ai = (Qi, Ni,→i, q0,i), ci : ni → mi, and c1 ⊕ c2 is well-typed,

then PA(c1 ⊕ c2) is correct with respect to A1 ./⊕ A2.

Proof. Let A1 = (Q1, N1,→1, q1), A2 = (Q2, N2,→2, q2), PA(c1) = (Q3, N3,→3

, q3), and PA(c2) = (Q4, N4,→4, q4). Let R1 ⊆ Q3 ×Q1, and R2 ⊆ Q4 ×Q2 be

bisimulations. We show that PA(c1 ⊕ c2) is correct with respect to A1 ./⊕ A2

by showing that the relation

R = {(x⊕ y, (x′, y′)) | x⊕ y ∈ Reach(c1 ⊕ c2), (x, x′) ∈ R1, (y, y′) ∈ R2}

is a bisimulation, i.e.:

1. ∀p∈Reach(c1⊕c2) p
K−→ p′ ∧ (p, q) ∈ R⇒ ∃q′∈Q1×Q2

q
K−→ q′ ∧ (p′, q′) ∈ R;

2. ∀q∈Q1×Q2 q
K−→ q′ ∧ (p, q) ∈ R⇒ ∃p′∈Reach(c1⊕c2) p

K−→ p′ ∧ (p′, q′) ∈ R;

1.

Consider a transition (x⊕y)
K−→ (x′⊕y′) in PA(c1⊕c2), and let (x⊕y, (p, q)) ∈

R, with (p, q) ∈ Q1 ×Q2.

Then there exists x⊕y sr⊕sr′−→
sk⊕sk′

x′⊕y′ in T (c1⊕c2), such that, (x, p), (x′, p′) ∈

R1, and (y, q), (y′, q′) ∈ R2, and

K = {(i, sr) | sr ⊕ sr ′ = v1 ⊕ · · · ⊕ vn1
⊕ vn1+1 ⊕ · · · ⊕ vn1+n2

,

i ∈ {1 . . . n1 + n2}, vi = fl}∪

{(i, sk) | sk ⊕ sk ′ = v1 ⊕ · · · ⊕ vm1
⊕ vm1+1 ⊕ · · · ⊕ vm1+m2

,

i ∈ {1 . . .m1 +m2}, vi = fl}
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By definition of R, (x′⊕ y′, (p′, q′)) ∈ R, and by definition of composition of

tiles ∃x sr−→
sk

x′ in T (c1) and ∃y sr−→
sk

y′ in T (c2). Therefore, by definition of PA,

there exist p
K1−−→ p′ in A1 and q

K2−−→ q′ in A2, such that, K1 = {(i, sr) | sr = v1⊕

· · ·⊕vn1 , i ∈ {1 . . . n1}, vi = fl}∪{(i, sk) | sk = v1⊕· · ·⊕vm1 , i ∈ {1 . . .m1}, vi =

fl}, and K2 = {(i, sr) | sr ′ = v1⊕· · ·⊕vn2
, i ∈ {1 . . . n2}, vi = fl}∪{(i, sk) | sk ′ =

v1 ⊕ · · · ⊕ vm2
, i ∈ {1 . . .m2}, vi = fl}.

So, there is a transition (p ⊕ q) K′

−−→ (p′ ⊕ q′) in (A1 ./⊕ A2), where K ′ =

(K1 ∪K2σ) = {(i, sr) | sr = v1⊕ · · ·⊕ vn1 , i ∈ {1 . . . n1}, vi = fl}∪{(i, sk) | sk =

v1 ⊕ · · · ⊕ vm1
, i ∈ {1 . . .m1}, vi = fl} ∪ ({(i, sr) | sr ′ = v1 ⊕ · · · ⊕ vn2

, i ∈

{1 . . . n2}, vi = fl} ∪ {(i, sk) | sk ′ = v1 ⊕ · · · ⊕ vm2
, i ∈ {1 . . .m2}, vi = fl})σ =

{(i, sr) | sr = v1⊕· · ·⊕vn1 , i ∈ {1 . . . n1}, vi = fl}∪{(i, sk) | sk = v1⊕· · ·⊕vm1 , i ∈

{1 . . .m1}, vi = fl} ∪ {(i, sr) | sr ′ = vn1+1 ⊕ · · · ⊕ vn1+n2 , i ∈ {n1 + 1 . . . n1 +

n2}, vi = fl}∪{(i, sk) | sk ′ = vm1+1⊕· · ·⊕vm1+m2
, i ∈ {m1+1 . . .m1+m2}, vi =

fl} = {(i, sr) | sr ⊕ sr ′ = v1 ⊕ · · · ⊕ vn1
⊕ vn1+1 ⊕ · · · ⊕ vn1+n2

, i ∈ {1 . . . n1 +

n2}, vi = fl} ∪ {(i, sk) | sk ⊕ sk ′ = v1 ⊕ · · · ⊕ vm1 ⊕ vm1+1 ⊕ · · · ⊕ vm1+m2 , i ∈

{1 . . .m1 +m2}, vi = fl} = K

Therefore 1. is valid.

2.

Consider a transition (p, q)
K−→ (p′, q′) in A1 ./⊕ A2, and let (x⊕ y, (p, q)) ∈

R, with (x⊕ y) ∈ Reach(c1 ⊕ c2).

Then one of the following conditions is true:

1. ∃p K1−−→ p′ in A1, such that K1 ∩N2σ = ∅, and K = K1

2. ∃q K2−−→ q′ in A2, such that K2σ ∩N1 = ∅ and K = (K2σ)

3. ∃p K1−−→ p′ in A1 and ∃q K2−−→ q′ in A2, such that K1 ∩N2σ = K2σN1, and

K = K1 ∪ (K2σ)

By definition of R, (x, p) ∈ R1, and (y, q) ∈ R2. Therefore, and by definition

of PA(c):

1. ∃x sr−→
sk

x′ in T (c1) and ∃y nofl⊕...⊕nofl−→
nofl⊕...⊕nofl

y′ in T (c2), such that K1 = {(i, sr) |

sr = v1⊕· · ·⊕vn1
, i ∈ {1 . . . n1}, vi = fl}∪{(i, sk) | sk = v1⊕· · ·⊕vm1

, i ∈

{1 . . .m1}, vi = fl}.
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2. ∃y sr−→
sk

y′ in T (c2) and ∃x nofl⊕...⊕nofl−→
nofl⊕...⊕nofl

x′ in T (c1), such that K2 = {(i, sr) |

sr = v1⊕· · ·⊕vn2
, i ∈ {1 . . . n2}, vi = fl}∪{(i, sk) | sk = v1⊕· · ·⊕vm2

, i ∈

{1 . . .m2}, vi = fl}.

3. ∃x sr−→
sk

x′ in T (c1) and ∃y sr′−→
sk′

y′ in T (c2), such that K1 = {(i, sr) | sr =

v1 ⊕ · · · ⊕ vn1
, i ∈ {1 . . . n1}, vi = fl} ∪ {(i, sk) | sk = v1 ⊕ · · · ⊕ vm1

, i ∈

{1 . . .m1}, vi = fl}, and K2 = {(i, sr) | sr ′ = v1 ⊕ · · · ⊕ vn2
, i ∈ {1 . . . n2},

vi = fl} ∪ {(i, sk) | sk ′ = v1 ⊕ · · · ⊕ vm2
, i ∈ {1 . . .m2}, vi = fl}.

By definition of bisimulation (x′, p′) ∈ R1, and (y′, q′) ∈ R2, and therefore,

(x′ ⊕ y′, (p′, q′)) ∈ R.

By the composition of tiles we have:

1. ∃x⊕ y sr⊕nofl⊕...⊕nofl−→
sk⊕nofl⊕...⊕nofl

x′ ⊕ y′ in T (c1 ⊕ c2)

2. ∃x⊕ y nofl⊕...⊕nofl⊕sr−→
nofl⊕...⊕nofl⊕sk

x′ ⊕ y′ in T (c1 ⊕ c2)

3. ∃x⊕ y sr⊕sr′−→
sk⊕sk′

x′ ⊕ y′ in T (c1 ⊕ c2)

Therefore

1. ∃(x⊕ y)
K′

−−→ (x′ ⊕ y′) in PA(c1 ⊕ c2), where K ′ = {(i, sr) |

sr ⊕ nofl⊕ . . .⊕ nofl = v1⊕· · ·⊕vn1
⊕vn1+1⊕ . . .⊕vn1+n2

, i ∈ {1 . . . n1 +

n2}, vi = fl} ∪ {(i, sk) | sk ⊕ nofl⊕ . . .⊕ nofl = v1 ⊕ · · · ⊕ vm1
⊕ vm1+1 ⊕

. . .⊕vm1+m2 , i ∈ {1 . . .m1 +m2}, vi = fl} = {(i, sr) | sr = v1⊕· · ·⊕vn1 , i ∈

{1 . . . n1}, vi = fl} ∪ {(i, sk) | sk = v1 ⊕ · · · ⊕ vm1 , i ∈ {1 . . .m1}, vi = fl} =

k1 = K.

2. ∃(x⊕ y)
K′

−−→ (x′ ⊕ y′) in PA(c1 ⊕ c2), where K ′ = {(i, sr) |

nofl⊕ . . .⊕ nofl⊕ sr = v1⊕· · ·⊕vn1
⊕vn1+1⊕ . . .⊕vn1+n2

, i ∈ {1 . . . n1 +

n2}, vi = fl} ∪ {(i, sk) | nofl⊕ . . .⊕ nofl⊕ sk = v1 ⊕ · · · ⊕ vm1 ⊕ vm1+1 ⊕

. . . ⊕ vm1+m2
, i ∈ {1 . . .m1 + m2}, vi = fl} = {(i, sr) | sr = vn1+1 ⊕

. . .⊕ vn1+n2
, i ∈ {n1 + 1 . . . n1 +n2}, vi = fl}∪{(i, sk) | sk = vm1+1⊕ . . .⊕

vm1+m2
, i ∈ {m1+1 . . .m1+m2}, vi = fl} = ({(i, sr) | sr = v1⊕. . .⊕vn2

, i ∈

{1 . . . n2}, vi = fl}∪{(i, sk) | sk = v1⊕. . .⊕vm2 , i ∈ {1 . . .m2}, vi = fl})σ =

K2σ = K.
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3. ∃(x ⊕ y)
K′

−−→ (x′ ⊕ y′) in PA(c1 ⊕ c2), where K ′ = {(i, sr) | sr ⊕ sr ′ =

v1 ⊕ · · · ⊕ vn1
⊕ vn1+1 ⊕ · · · ⊕ vn1+n2

, i ∈ {1 . . . n1 + n2}, vi = fl} ∪

{(i, sk) | sk ⊕ sk ′ = v1⊕ · · · ⊕ vm1 ⊕ vm1+1⊕ · · · ⊕ vm1+m2 , i ∈ {1 . . .m1 +

m2}, vi = fl} = {(i, sr) | sr = v1 ⊕ · · · ⊕ vn1
, i ∈ {1 . . . n1}, vi = fl} ∪

{(i, sk) | sk = v1 ⊕ · · · ⊕ vm1
, i ∈ {1 . . .m1}, vi = fl} ∪ {(i, sr) | sr ′ =

vn1+1 ⊕ · · · ⊕ vn1+n2
, i ∈ {n1 + 1 . . . n1 + n2}, vi = fl} ∪ {(i, sk) | sk ′ =

vm1+1 ⊕ · · · ⊕ vm1+m2 , i ∈ {m1 + 1 . . .m1 +m2}, vi = fl} = {(i, sr) | sr =

v1 ⊕ · · · ⊕ vn1
, i ∈ {1 . . . n1}, vi = fl} ∪ {(i, sk) | sk = v1 ⊕ · · · ⊕ vm1

, i ∈

{1 . . .m1}, vi = fl} ∪ ({(i, sr) | sr ′ = v1 ⊕ · · · ⊕ vn2
, i ∈ {1 . . . n2}, vi =

fl}∪{(i, sk) | sk ′ = v1⊕· · ·⊕vm2
, i ∈ {1 . . .m2}, vi = fl})σ = K1∪K2σ = K.

Therefore, R is a bisimulation, and PA(c1 ⊕ c2) is correct with respect to

A1 ./⊕ A2.

Lemma 3.5 (Correctness of PA(Trn(c))). If PA(c) is correct with respect to A,

where c : m1 → m2, and Trn(c) is well-typed, then PA(Trn(c)) is correct with

respect to Trn(A).

Proof. Let A = (Q1, N1,→1, q1), and PA(c) = (Q2, N2,→2, q2). Let R1 ⊆

Q2×Q1 be a bisimulation. We show that PA(Trn(c)) is correct with respect to

Trn(A) by showing that the relation

R = {(Trn(x), x′) | x ∈ Reach(Trn(c)), (x, x′) ∈ R1}

is a bisimulation, i.e.:

1. ∀p∈Reach(Trn(c)) p
K−→ p′ ∧ (p, q) ∈ R⇒ ∃q′∈Q1 q

K−→ q′ ∧ (p′, q′) ∈ R;

2. ∀q∈Q1 q
K−→ q′ ∧ (p, q) ∈ R⇒ ∃p′∈Reach(Trn(c)) p

K−→ p′ ∧ (p′, q′) ∈ R;

1.

Consider a transition Trn(x)
K−→ Trn(x′) in PA(Trn(c)), and let (Trn(x), p) ∈

R, with p ∈ Q1.

Then there exists Trn(x)
sr−→
sk

Trn(x′) in T (Trn(c)), such that K = {(i, sr) | sr

= v1⊕· · ·⊕vm1−n, i ∈ {1 . . .m1−n}, vi = fl}∪{(i, sk) | sk = v1⊕· · ·⊕vm2−n, i ∈

{1 . . .m2 − n}, vi = fl}, and (x, p), (x′, p′) ∈ R1
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By definition of R, (Trn(x′), p′) ∈ R, and by definition of trace composition

there exists x
sr⊕v−→
sk⊕v

x′ in T (c), and, therefore, ∃p K1−−→ p′ in A, such that, K1 =

{(i, sr) | sr ⊕ v = v1 ⊕ · · · ⊕ vm1 , i ∈ {1 . . .m1}, vi = fl} ∪ {(i, sk) | sk ⊕ v =

v1 ⊕ · · · ⊕ vm2
, i ∈ {1 . . .m2}, vi = fl}.

So, there is a transition p
K′

−−→ p′ in Trn(A), where K ′ = K1\X = ({(i, sr) |

sr ⊕ v = v1 ⊕ · · · ⊕ vm1
, i ∈ {1 . . .m1}, vi = fl} ∪ {(i, sk) | sk ⊕ v = v1 ⊕ · · · ⊕

vm2 , i ∈ {1 . . .m2}, vi = fl})\X = {(i, sr) | sr = v1⊕· · ·⊕vm1 , i ∈ {1 . . .m1}, vi =

fl} ∪ {(i, sk) | sk = v1 ⊕ · · · ⊕ vm2
, i ∈ {1 . . .m2}, vi = fl} = K

Therefore 1. is valid.

2.

Consider a transition p
K−→ p′ in Trn(A), and let (x, p) ∈ R, with x ∈

Reach(Trn(c)).

Then there exists p
K1−−→ p′ in A, such that K = K1\X, and for all i ∈

{0 . . . n− 1}, (m1 − i, sr) ∈ K1 ⇔ (m2 − i, sk) ∈ K1.

By definition of bisimulation, and PA(c), ∃y sr⊕v−→
sk⊕v

y′ ∈ T (c), such that

K1 = {(i, sr) | sr ⊕ v = v1⊕· · ·⊕vm1
, i ∈ {1 . . .m1}, vi = fl}∪{(i, sk) | sk ⊕ v =

v1 ⊕ · · · ⊕ vm2 , i ∈ {1 . . .m2}, vi = fl}, with (y, p), (y′, p′) ∈ R1. Then, by

definition of the trace operator, ∃x sr−→
sk

x′ ∈ T (Trn(c)), such that x = Trn(y),

and x′ = Trn(y′), and, by definition of R, (x′, p′) ∈ R.

By PA(Trn(c)), ∃x K′

−−→ x′ in PA(Trn(c), where K ′ = {(i, sr) |

sr = v1 ⊕ · · · ⊕ vm1−n, i ∈ {1 . . .m1 − n}, vi = fl} ∪ {(i, sk) | sk = v1 ⊕ · · · ⊕

vm2−n, i ∈ {1 . . .m1 − n}, vi = fl} = ({(i, sr) | sr ⊕ v = v1 ⊕ · · · ⊕ vm1 , i ∈

{1 . . .m1}, vi = fl}∪{(i, sk) | sk = v1⊕· · ·⊕vm2
, i ∈ {1 . . .m2}, vi = fl})\X = K.

Therefore, R is a bisimulation, and PA(Trn(c)) is correct with respect to

Trn(A).

Theorem 3.1 (Correctness of PA). Given a well-typed connector c, PA(c) is

correct with respect to some port automaton A.

Proof. This result follows by induction on the structure of connectors, whereas

the base case is captured by Lemma 3.2, and the inductive steps are captured

by Lemmas 3.3 to 3.5.
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id1 Id1 = a|b . Id1

fifo Fifo = a . b . Fifo

drain Drain = a|b . Drain

lossy Lossy = (a + a|b) . Lossy

∆2 Dupl = a|b|c . Dupl

∇2 Merger = (a|c + b|c) . Merger

Table 3.1: mCRL2 processes of primitives, for some actions a, b, c.

3.4 Modeling Connector Calculus with mCRL2

We now present our encoding of the core connector calculus in mCRL2. Our

encoding follows the work done by Kokash et al. [7], presented in Section 2.3.

Furthermore, we base our work on the constraint automata semantics, ignoring

the data constraints (port automata). Following the encoding definition we

present a proof of its correctness.

3.4.1 Core Calculus into mCRL2

In Table 3.1 we present the mCRL2 processes of individual channels. These pro-

cesses are equivalent to the ones presented for the channels of Reo in Table 2.8,

with the exception of ∆2, and ∇2, which have no correspondent Reo channels.

We compose these primitives with the parallel composition and synchronisation

of actions, as defined in the following example:

Example 3.8. Consider the connector c = id1; ∆2; (fifo⊕ lossy). The channels

in the connector maps to the following processes:

Id1 = (a|b) . Id1 Fifo = f . g . Fifo

Dupl = c|d|e . Dupl Lossy = (h+ h|i) . Lossy

Let πc be the set of definitions above. A program for c can be built by

placing these definitions in parallel, by imposing communication with Γ, and by

encapsulating internal ports with ∂. For example, the program (Pc, πc), with

Pc defined below, provides a (naive) encoding of the behaviour of c, which only

exposes the ports a, g, and i.

Pc = ∂{b,c,d,e,f,h}

(Γ{b|c→bc,d|f→df ,e|h→eh}(Sync ‖ Dupl ‖ Fifo ‖ Lossy))
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Similar to the case in Example 2.6, applying the block and communication

operations as a last step proves to be inefficient, due to state space explosion.

Therefore we present an incremental encoding - MC- for a connector. The

encodingMC follows a similar approach to PA, where actions follow the pattern

(n, sr)`, (n, sk)`, or (n,mx)` to indicate the n-th source, sink, or mixed port,

marked by the identifier unique ` to distinguish between actions from different

processes. The result of this encoding is a pair (P, π), where P is the name of

a process, the initial process of the encoding, and π is a mapping from process

names to process definitions, such that the definition of P is defined in π.

Our encoding abstains from using processes to encode nodes (which are a

fundamental aspect of the encoding for Reo in [7]). These are useful in a Reo

context, but since our calculus contains only 1 to 1 port connections, nodes can

be ignored. A positive side effect is a more efficient encoding.

We start by defining auxiliary functions Primitive to map primitives into

processes, Hide, Block, and Com, used to describe ports that are hidden, are

blocked, and communicate, and Renumber to renumber ports in the tensor com-

position. The function Primitive(p, `) defines the process of primitive p according

to Table 3.1, using the proposed notation for actions marked by `. We present

the case for the γn,m primitive (which is not defined in Table 3.1) with the

example γ1,1, whose process is

Primitive(γ1,1, `) = (1, sr)`|(2, sk)` || (2, sr)`|(1, sk)`,

exposing a swap of output ports, according to the behaviour of the primitive.

The auxiliary functions are defined below:

Block(n, `1, `2) =
⋃

1≤i≤n

{(i, sk)`1 , (i, sr)`2}

BlockTr(n,m,m
′, `1) =

⋃
0≤i≤n−1

{(m− i, sr)`1 , (m
′ − i, sk)`1}

Com(n, `1, `2, `) =
⋃

1≤i≤n

{(i, sk)`1 |(i, sr)`2 → (i,mx)`}
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ComTr(n,m,m
′, `1) =

⋃
0≤i≤n−1

{(m′ − i, sk)`1 |(m− i, sr)`1 → (i+ 1,mx)`1}

Hide(n, `1) =
⋃

1≤i≤n

{(i,mx)`1}

Rename(n,m, `1, `2, `) =
⋃

1≤i≤n

{(i, sr)`1 → (i, sr)`}

⋃
1≤i≤m

{(i, sk)`2 → (i, sk)`}

Renumber(n1,m1, `, n2,m2) =
⋃

1≤i≤n1

{(i, sr)` → (i+ n2, sr)`}

⋃
1≤i≤m1

{(i, sk)` → (i+m2, sk)`}

Definition 3.8. Encoding MC(·)`
Given a connector c and a unique identifier `, MC(c)` is defined below.

MC(p)` =(P`, {P` = Primitive(p, `)})

where p is a primitive connector

MC(c1; c2)` = (P` ,
{
P` = ρRename(n1,n2,`1,`2,`)(τHide(n,`)(∂Block(n,`1,`2)

(ΓCom(n,`1,`2,`)(P1 ‖ P2))))
}
∪ π1 ∪ π2)

where c1 : n1 → n c2 : n→ n2

(P1, π1) =MC(c1)`1 (`1 is fresh)

(P2, π2) =MC(c2)`2 (`2 is fresh)

MC(c1 ⊕ c2)` = (P` ,
{
P` = ρRename(n1,m1,`1,`1,`)(ρRename(n2,m2,`2,`2,`)

(P1 ‖ ρRenumber(n2,m2,`2,n1,m1)(P2)))
}
∪ π1 ∪ π2)

where c1 : n1 → m1 c2 : n2 → m2

(P1, π1) =MC(c1)`1 (`1 is fresh)

(P2, π2) =MC(c2)`2 (`2 is fresh)

MC(Trn(c))` = (P` ,
{
P` = τHide(n,`)(∂BlockTr(n,m,m′,`)(ΓComTr(n,m,m′,`)(P )))

}
∪ π)

where c : m→ m′, n ≤ m ∧ n ≤ m′

(P, π) =MC(c)`

We illustrate this encoding using the connector of Example 3.8.

46



Example 3.9. Let x = id1; ∆2; (fifo⊕ lossy) and a, b, c, d, e be unique identifier;

then:

MC(fifo⊕ lossy)a = (Pa, πa)

πa = {Pa = Fifoa ‖ Lossya,

Fifoa = (1, sr)a|(1, sk)a . Fifoa,

Lossya = ((2, sr)a + (2, sr)a|(2, sk)a) . Lossya}

MC(∆2; (fifo⊕ lossy))b = (Pb, πb)

πb = {Pb = ρ{(1,sr)c→(1,sr)b,(1,sk)a→(1,sk)b,(2,sk)a→(2,sk)b}

(τ{(1,mx)b,(2,mx)b}(∂{(1,sk)c,(1,sr)a,(2,sk)c,(2,sr)a}

(Γ{(1,sk)c|(1,sr)a→(1,mx)b,(2,sk)c|(2,sr)a→(2,mx)b)}(Duplc ‖ Pa)))),

Duplc = (1, sr)c|(1, sk)c|(2, sk)c . Duplc} ∪ πa

MC(x)e = (Pe, πe)

πe = {Pe = ρ{(1,sr)d→(1,sr)e,(1,sk)b→(1,sk)e,(2,sk)b→(2,sk)e}

(τ{(1,mx)e}(∂{(1,sk)d,(1,sr)b}(Γ{(1,sk)d|(1,sr)b→(1,mx)e}(Idd ‖ Pb)))),

Idd = (1, sr)d|(1, sk)d . Idd} ∪ πb

3.4.2 Correctness of MC`(·)

We now want to prove the correctness of the encoding MC. We begin the

proof by showing that the processes of primitives in Table 3.1 are the result of

applying proc to the PA in Fig. 3.4. Furthermore, we show that proc is sound

with respect to the operations:

P1‖;P2 = ρRename(n1,n2,`1,`2,`)(τHide(n,`)(∂Block(n,`1,`2)(ΓCom(n,`1,`2,`)(P1 ‖ P2))))

P1‖⊕P2 = ρRename(n1,m1,`1,`1,`)(ρRename(n2,m2,`2,`2,`)(P1 ‖ P2)))

Trn(P ) = τHide(n,`)(∂BlockTr(n,m,m′,`)(ΓComTr(n,m,m′,`)(P )))

where P1, P2, P are processes, defined by proc. For simplicity, we assume that

proc is only applied to port automata formed by the PA` encoding, which is

a variation of the PA encoding, with ports labelled with the unique mark `,

similar to the MC encoding actions.

47



Lemma 3.6 (Correctness of Primitive Encodings). For any primitive p from

Fig. 3.4, with the respective automata A = (Q,N ,→, q0), and corresponding

process P from Table 3.1, P ∼= proc(A, q0).

Proof. We will only show that this lemma holds for one of the connectors, the

fifo, because the other connectors can be shown in a similar way. Recall the

automaton A for the fifo defined in Section 3.3.1, adapted with the ` label. The

complete specification proc(A, fifo) is defined below:

• proc(A, fifo) = (1, sr)`.proc(A, fifofull)

• proc(A, fifofull) = (1, sk)`.proc(A, fifo)

Recall also the process Fifo = a . b . Fifo of the fifo in Table 3.1. It is enough

to observe that R = {〈proc(A, fifo), a . b . Fifo〉, 〈proc(A, fifofull), b . Fifo〉} is a

strong bisimulation between the two processes, after replacing a by (1, sr)` and

b by (1, sk)`.

Lemma 3.7 (Correctness of ‖;). Consider two connectors c1 : n1 → n, c2 :

n → n2. Let A1 = PA`1(c1), and A2 = PA`2(c2). proc((A1 ./; A2σ, (q1, q2)) ∼=

proc(A1, q1) ‖; proc(A2, q2), where q1, q2 are the initial states of the respective

automata, and σ is the set of port renamings {(i, sr)`1 → (i, sr)` | 1 ≤ i ≤ n1}∪

{(i, sk)`2 → (i, sk)` | 1 ≤ i ≤ n2}.

Proof. We simply note that for PA A1, A2, A1 ./; A2 = (A1 ./γ A2) \X, where

X is the hiding set, where γ is the renaming function in [7], which we define

to be such that γ−1
1 = σ1, and γ−1

2 = σ2, where σ1, σ2 are defined in the

definition of ./;. Also, given two processes P1, P2, we have that P1 ‖; P2 =

ρRename(n1,n2,`1,`2,`)(τHide(m,`)(P1 ‖γ P2))).

In theorem 4.1 of [7], we are presented with the correctness of ‖γ . Further-

more, the set X used in the ./; definition hides a set of ports, with an equivalent

set of actions hidden by the Hide set. The same idea applies to the renaming

sets Rename and σ. Therefore the lemma is correct.

Lemma 3.8 (Correctness of ‖⊕). Consider two connectors c1 : n1 → m1,

c2 : n2 → m2. Let A1 = PA`1(c1), and A2 = PA`2(c2). proc((A1 ./⊕
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A2)σ, (q1, q2)) ∼= proc(A1, q1) ‖⊕ proc(A2, q2), where q1, q2 are the initial states

of the respective automata, and σ is the set of port renamings such that

σ = {(i, sr)`1 → (i, sr)` | 1 ≤ i ≤ n1} ∪ {(i, sk)`1 → (i, sk)` | 1 ≤ i ≤ m1}∪

{(i, sr)`2 → (i, sr)` | 1 ≤ i ≤ n2} ∪ {(i, sk)`2 → (i, sk)` | 1 ≤ i ≤ m2}

Proof. The proof follows the same steps as the proof for correctness of ‖;, but

taking an empty function γ.

Lemma 3.9 (Correctness of Trn(P )). Consider a connector c : m1 → m2,

with n ∈ N, such that n ≤ m1 and n ≤ m2. proc(Trn(PA`(c)), (q1)) ∼=

Trn(proc(PA`(c), q1)), where q1 is the initial state PA`(c).

Proof. Let PA`(c) = (Q, N,→, q1). The proof is done by showing that the rela-

tion R = {〈proc(Trn(PA`(c)), qi), T rn(proc(PA`(c), qi))〉 | qi ∈ Q} is a bisim-

ulation, i.e.,

1. for all qi ∈ Q, if proc(Trn(PA`(c)), qi)
α−→ P , then Trn(proc(PA`(c), qi))

α−→

Q and (P,Q) ∈ R;

2. for all qi ∈ Q, if Trn(proc(PA`(c), qi))
α−→ Q, then proc(Trn(PA`(c)), qi)

α−→

P and (P,Q) ∈ R.

1.

Let qi ∈ Q, such that proc(Trn(PA`(c)), qi)
α−→ P . By definition of R,

(proc(Trn(PA`(c)), qi), T rn(proc(PA`(c), qi)) ∈ R. By definition of proc, there

exist K ⊆ N and qj ∈ Q, such that qi
K−→Tr qj is a transition in Trn(PA`(c)),

where K = α{}. Therefore, P = proc(Trn(PA`(c)), qj).

By definition of Trn(A), qi
K′

−−→ qj is a transition in PA`(c), such that K =

K ′\X, and for all i ∈ {0 . . . n−1}, (m1−i, sr) ∈ K ′ if and only if (m2−i, sk) ∈ K ′,

with X = {(m1 − i, sr) | 0 ≤ i ≤ n− 1} ∪ {(m2 − i, sk) | 0 ≤ i ≤ n− 1}.

By definition of proc, proc(PA`(c), qi)
α′

−→ proc(PA`(c), qj), where α′{} =

K ′. By definition, Trn(proc(PA`(c), qi)) = τH(∂B(ΓC(proc(PA`(c), qi)))),
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where:

H = Hide(n, `) =
⋃

1≤i≤n

{(i,mx)`}

B = BlockTr(n,m1,m2, `) =
⋃

0≤i≤n−1

{(m1 − i, sr)`, (m2 − i, sk)`}

C = ComTr(n,m1,m2, `) =
⋃

0≤i≤n−1

{(m2 − i, sk)`|(m1 − i, sr)` → (i+ 1,mx)`}

Therefore, Trn(proc(PA`(c), qi))
α′′

−−→ Trn(proc(PA`(c), qj)),if γC(α′){} ∩B =

∅, where α′′ = θH(γC(α′)). This is true because for all i ∈ {0 . . . n − 1},

(m1 − i, sr) ∈ K ′ if and only if (m2 − i, sk) ∈ K ′. Also, because of this

property, C can be equivalent to {(m1 − i, sr) → (i + 1,mx)` | 0 ≤ i ≤

n − 1} ∪ {(m2 − i, sk) → (i + 1,mx)` | 0 ≤ i ≤ n − 1}. Thus, θH(γC(α′))

hides the actions equivalent to the ports in X, and therefore produces the

same outcome as θX(α′). So, α′′ = α. Furthermore, by definition of R,

(proc(Trn(PA`(c)), (qj)), T rn(proc(PA`(c), qj))) ∈ R.

2.

Let qi ∈ Q, such that Trn(proc(PA`(c), (qi)))
α−→ Q. By definition of R,

(proc(Trn(PA`(c)), (qi)), T rn(proc(PA`(c), qi))) ∈ R. By definition of Trn(P ),

and of process algebras, proc(PA`(c), (qi))
α′

−→ Q′, where Q = Trn(Q′), α =

θH(γC(α′)), and γC(α′) ∩B = ∅, with H, C, B defined before in this proof.

By definition of proc, qi
K−→ qj is a transition of PA`(c), where K = α′{}.

Then, Q′ = proc(PA`(c), (qj)). Because γC(α′){} ∩B = ∅, we know that for all

i ∈ {0 . . . n− 1}, (m1− i, sr) ∈ K if and only if (m2− i, sk) ∈ K. Therefore, and

by definition of Trn for port automata qi
K′

−−→ qj is a transition in Trn(PA`(c)),

where K ′ = K\X,for X = {(m1 − i, sr) | 0 ≤ i ≤ n − 1} ∪ {(m2 − i, sk) | 0 ≤

i ≤ n− 1}.

By definition of proc, proc(Trn(PA`(c)), qi)
α′′

−−→ proc(Trn(PA`(c)), qj), with

α′′{} = K ′ = K\X. Since for all i ∈ {0 . . . n− 1} (m1 − i, sr) ∈ K if and only if

(m2 − i, sk) ∈ K, K\X produces the same output as θH(γC(α′)){}. Therefore,

α = α′′. Furthemore, (proc(Trn(PA`(c)), (qj)), T rn(proc(PA`(c), qj))) ∈ R, by

definition of R.

So, R is a bisimulation, and proc(Trn(PA`(c)), (q1)) ∼= Trn(proc(PA`(c), q1)),

where q1.
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Conn. Calculus

Port Automata mCRL2∼=

(c.f. Lemmas 3.6 to 3.9)

proc

∼=
(c.f. Section 3.3) PA

MC

Figure 3.5: Relation between the Connector Calculus, PA, and mCRL2.

In Fig. 3.5 we present a diagram of the encodings presented throughout this

document. After proving that the PA encoding and proc function are sound

with respect to the algebraic structures, we show that the diagram commutes,

i.e., for any connector c,MC`(c) = proc(PA`(c)). Once again we show this with

an inductive argument, using the primitives as the base, and the operators as

the inductive steps.

Lemma 3.10 (Commutativity of Primitive Encodings). For any primitive p

from Table 3.1, with the respective processMC`(p) = (P, π), and corresponding

port automaton PA`(p) = (Q,N,→, q0), P ∼= proc(PA`(p), q0).

Proof. We will only show that this lemma holds for one of the connectors, the

fifo, because the other connectors can be shown in a similar way. Recall the

automaton PA(fifo) defined in Section 3.3.1, adapted with the ` label. The

complete specification proc(PA(fifo), fifo) is defined below:

• proc(A, fifo) = (1, sr)`.proc(A, fifofull)

• proc(A, fifofull) = (1, sk)`.proc(A, fifo)

Using the definition of the MC` encoding we obtain

MC` = (Fifo, {Fifo = (1 , sr)` . (1 , sk)` . Fifo})

It is enough to observe that

R = {〈proc(A, fifo),Fifo〉, 〈proc(A, fifofull), (1 , sk)` . Fifo〉}

is a strong bisimulation between the two processes.

Lemma 3.11 (Commutativity of Sequential Composition). Let c1, c2 be two

connectors, such that PA`(c1) = (Q1, N1,→1, q1), PA`(c2) = (Q2, N2,→2, q2),
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MC`(c1) = (P1, π1), MC`(c2) = (P2, π2). If proc(PA`(c1), q1) ∼= P1 and

proc(PA`(c2), q2) ∼= P2, c1; c2 is well typed, and MC`(c1; c2) = (P, π), then

proc(PA`(c1; c2), (q1; q2)) ∼= P .

Proof. Using Lemmas 3.3 and 3.7, we have

proc(PA`(c1; c2), (q1; q2)) ∼= proc(PA`1(c1), q1)‖;proc(PA`2(c2), q2)

= ρRename(n1,n2,`1,`2,`)(τHide(n,`)(∂Block(n,`1,`2)(ΓCom(n,`1,`2)

(proc(PA`1(c1), q1) ‖ proc(PA`2(c2), q2))))).

Furthermore, using the hypothesis, and the definition ofMC`, we have that

ρRename(n1,n2,`1,`2,`)(τHide(n,`)(∂Block(n,`1,`2)(ΓCom(n,`1,`2)

(proc(PA`1(c1), q1) ‖ proc(PA`2(c2), q2)))))

∼= ρRename(n1,n2,`1,`2,`)(τHide(n,`)(∂Block(n,`1,`2)(ΓCom(n,`1,`2)(P1 ‖ P2))))

= P

Therefore this lemma is true.

Lemma 3.12 (Commutativity of Parallel Composition). Let c1, c2 be two

connectors, such that PA`(c1) = (Q1, N1,→1, q1), PA`(c2) = (Q2, N2,→2, q2),

MC`(c1) = (P1, π1), MC`(c2) = (P2, π2). If proc(PA`(c1), q1) ∼= P1 and

proc(PA`(c2), q2) ∼= P2, c1 ⊕ c2 is well typed, and MC`(c1 ⊕ c2) = (P, π), then

proc(PA`(c1 ⊕ c2), (q1 ⊕ q2)) ∼= P .

Proof. Using Lemmas 3.4 and 3.8, we have

proc(PA`(c1 ⊕ c2), (q1 ⊕ q2))

∼= proc(PA`1(c1), q1)‖⊕proc(PA`2(c2), q2)

= ρRename(n2,m2,`2,`2,`)(proc(PA`1(c1), q1) ‖ proc(PA`2(c2), q2)))

Furthermore, using the hypothesis, and the definition of MC`, we have

ρRename(n2,m2,`2,`2,`)(proc(PA`1(c1), q1) ‖ proc(PA`2(c2), q2)))

∼= ρRename(n2,m2,`2,`2,`)(P1 ‖ P2)) = P

Therefore this lemma is true.
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Lemma 3.13 (Commutativity of the Trace Operation). Let c1 be a connector,

such that PA`(c1) = (Q1, N1,→1, q1),MC`(c1) = (P1, π1). If proc(PA`(c1), q1) ∼=

P1, Trn(c1) is well typed, andMC`(Trn(c1)) = (P, π), then proc(PA`(Trn(c1), q1) ∼=

P .

Proof. Using Lemmas 3.5 and 3.9, we have

proc(PA`(Trn(c1)), q1)

∼= Trn(proc(PA`(c1), q1))

= τHide(n,`)(∂BlockTr(n,m,m′,`)(ΓComTr(n,m,m′,`)(proc(PA`(c1), q1))))

Furthermore, using the hypothesis, and the definition of MC`, we have

τHide(n,`)(∂BlockTr(n,m,m′,`)(ΓComTr(n,m,m′,`)(proc(PA`(c1), q1))))

∼= τHide(n,`)(∂BlockTr(n,m,m′,`)(ΓComTr(n,m,m′,`)(P1)))

= P

Therefore this lemma is true.

Theorem 3.2 (Commutativity of MC` and proc.PA`). Let c be a connector,

such that PA`(c) = (Q,N,→, q), MC`(c) = (P, π). Then P ∼= proc(PA`(c), q).

Proof. This result follows by induction on the structure of connectors, whereas

the base case is captured by Lemma 3.10, and the inductive steps are captured

by Lemmas 3.11 to 3.13.
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Chapter 4

The ReoLive Web

Framework

The ReoLive framework combines tools to analyse connectors and families of

connectors, presenting graphics and reports, in a single web-based front-end

application. The project is available online to be compiled in https://github.

com/ReoLanguage/ReoLive.

The user can generate a connector using the Preo language, which is a con-

crete language to describe connectors, based on the connector calculus presented

in [8]. Upon receiving a connector, the framework performs several computa-

tions to provide reports and depict graphically the given connector.

The framework offers two modes: a local mode, which can be executed on

any machine, and a client-server mode, using an interface which connects the

users machine to a server which performs more complex calculations. Each

mode has its advantages and disadvantages, which we will present later.

We begin this chapter by presenting the Preo language, and its relation to

the connector calculus presented in Chapter 3 (Section 4.1). After this, we

introduce the main aspects of the user interface (Section 4.2). Later we report

on the architecture of the framework, followed by some implementation details

(Sections 4.3 and 4.4 respectively). Section 4.5 presents an example of the

results obtained on the exclusive router connector. Finally, in Section 4.6, we

explain some of the difficulties which prevented the implementation of a bounded
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c = p | c;c′ | c*c′ | c^n | Tr(n)(c) | c{c1, c2, . . .} | φ? c+ c′ | c|ψ | \ x :T . c

p = id | sym(n,m) | dupl | merger | drain | fifo | lossy

T = I | B

Figure 4.1: Syntax for the Preo language, where n,m ∈ N.

analysis of connector families, introduced by Proença and Clarke [8].

4.1 The Preo Language

The Preo language consists of an ASCII representation of the calculus of fami-

lies of Reo connectors presented by Proença and Clarke [8], whose core syntax

is presented in Chapter 3. The basic syntax of the language is presented in

Fig. 4.1, where the markers I, and B represent the integer and boolean data

types respectively, φ, ψ represent a boolean expression, n represents an integer

expression, and x is a variable name. The operators presented in a faded colour

are used to form parameterized connectors, and can describe connector families,

which are not defined in this document.

The operators ;, *, and Tr define the sequential, tensor and trace operations

respectively, while the ^ operator is a syntactic sugar for an n-ary tensor product

of the connector c (e.g. fifo^3 ≡ fifo*fifo*fifo). Furthermore, a user

can create named connectors using a concept called subconnector, by inserting

these named connectors inside the symbols {}. Finally, two keywords: reader,

and writer are defined in the language, which are used to visually simulate

components when the connector is graphically represented.

Example 4.1. The following instance of the Preo language: dupl; x; sym(1,

1); x {x = fifo*lossy} corresponds to the connector

∆2 ; (fifo ⊕ lossy) ; γ1,1 ; (fifo ⊕ lossy)
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Figure 4.2: Screenshot of the ReoLive Website.

4.2 User Interface

We now present the interface for the local version of the framework, disregarding

the server interface, since currently both versions have minimal interface diffe-

rences. As the development of the project progresses, the respective interfaces

may diverge from each other. In Fig. 4.2 we can find a screenshot of the current

version of the framework. This version can be found pre-compiled online.1 This

web front-end is subdivided into different boxes, each providing a different input

or output:

1. Input area;

2. Connector type;

3. A concrete instance and its type;

4. Examples of connectors;

5. Graphical Output of the instance from (3);

6. Graphical Output of the Port Automata of the instance from (3);

7. mCRL2 program, ready to be analysed by mCRL2 tools.

1https://reolanguage.github.io/ReoLive/snapshot/
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Figure 4.3: Example of an error output

The user interacts directly with the input area, by inserting the intended

connector or family of connectors using the preo language. After the user inputs

a new connector, a chain of computations is triggered. Upon conclusion, the

user is presented with one of two things: an error box, detailing either a parsing

error or a runtime error, or informations about the connector, and respective

graphical analysis in the visible boxes. The error box is not visible to the user,

unless an error occurs, and, when visible, it shows the information about the

error. Fig. 4.3 contains the output error of the insertion of dupl; fifo, which

contains a type error.

When the computations succeed, each box presents some information about

the connector. The connector type box presents the input and output ports

of each connector. If the connector is parameterized, some restrictions on the

parameters may show up in this box. The concrete instance box presents an

instance of the language given in the core calculus presented in Fig. 3.1. If the in-

put connector is already a core instance, then this is the instance presented; oth-

erwise an instance is calculated (e.g. \n.fifo^n generates the instance fifo).

The remaining information, presented in the right column, is computed using

this core instance of the connector. In (5), we are presented with an interactive

graphical representation of the core instance, as a reo connector. (6) presents

a simple representation of the port automaton of the instance, based on the

encoding of Section 3.3. The port automata does not use unique identifiers on

transitions. Instead, transitions contain the name of the primitives where infor-

mation flows, associated with a downward arrow depicting information flowing
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into the primitive, an upward arrow, depicting information leaving the primi-

tive, or both. The mCRL2 box presents the model in mCRL2 of the instance

following the encoding of Section 3.4, which the user can copy and process with

the mCRL2 toolset. In this model, each action is identified by the name and

a unique identifier of the primitive it refers to, as well as information about

the type of port. Consider, for example a fifo. If the generated identifier is 0,

then the input action of the primitive is identified by fifo0in1, referring to

the first input (source) port of the fifo with identifier 0. Finally, the examples

box provides some useful examples of connectors. When an example is pressed,

the connector definition is placed in the input box and the computations are

performed.

Any box can be minimized, hiding the output. This is particularly useful in

the case of (6), because calculating and displaying the automaton is a computa-

tionally expensive operation, and state space explosion of the resulting PA may

occur. We partially solved this problem by not performing the computation

of (5), (6), and (7), when the respective boxes are minimized, since all may

suffer from this problem. The user can minimize the boxes by clicking on the

respective title.

4.3 Architecture

The ReoLive framework is split into two main projects: the Preo project,2 and

Reolive project.3 The former provides the back-end components to parse and

analyse connectors, while the latter uses the components of the preo project

to generate a front-end to display the information. The Preo project was de-

veloped using the Scala programming language, and is compiled through the

Reolive project either into a standalone JavaScript website, using the Scala.js

compiler,4 or into a client-server pair of programs. In the latter case, there is a

client component, compiled into JavaScript which communicates with a server

component, developed using the Play framework,5 and compiled into Java bina-

2https://github.com/ReoLanguage/Preo
3https://github.com/ReoLanguage/ReoLive
4https://www.scala-js.org
5https://www.playframework.com
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ries. Furthermore, both JavaScript programs use the D3 JavaScript libraries6 to

produce the graph layouts, which manipulate SVG-based diagrams. The overall

architecture is summarised in Fig. 4.4.

Preo 
(Scala)

ReoLive 
(Scala)

Lightweight 
(JavaScript)

Client 
(JavaScript)

Server 
(JVM)D3 

(JavaScript)
used by compiled

Figure 4.4: Architecture of the ReoLive implementation.

The standalone JavaScript website has the advantage of being an easy to

distribute project (with a snapshot provided online), while the client-server

mode is more powerful and complete. In this case, the server uses an SMT solver

to address complex families of connectors, and it can execute mCRL2 commands

to compile the generated model, providing the user with the resulting LTS and

LPS (which is not possible to do using the standalone JavaScript). Furthermore,

the ability to execute mCRL2 commands opens the possibility to integrate a µ-

calculus box on the client site, which can be used to analyse the mCRL2 model

on the server side, and provide feedback to the user.

4.4 Implementation Details

The framework is composed of individual widgets, coordinated by a central

manager. Internally a widget is an object with an associated data type, which

stores a state variable with the associated data type which can be queried by

other widgets. Each widget provides a visual output of one or more boxes, as

highlighted in Fig. 4.2. Each widget provides three functions: init, get, and

update. The init function loads the visual output in the front-end, and sets the

initial state values for its variables. The function get queries the current value

of the state variable of the widget. update updates the state of its variables

and the output front-end. Furthermore, widgets may have other widgets as

dependencies. When executing the update function, the widgets should get the

associated state values of the dependencies, calling their get function.

6https://d3js.org
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The manager loads the widgets into the front-end, using the init function

of each widget loaded. Furthermore it generates a function which runs the

update function of each widget ordering the updates such that the update of

the dependencies of each widget is executed before the update of the widget,

i.e., if widget B depends on widget A, then B.update must be executed after

A.update is executed. In the client-server component, the access to the server is

performed using JavaScript callbacks inside the update method of the widgets.

We present the widgets of the ReoLive framework, with the dependencies,

associated data type, and relevant information about them. Each widget is

identified to a number corresponding to the respective box displayed in Fig. 4.2.

Input Widget (1): The input widget has no dependencies, and its only

function is to store the string containing the input connector, when updating.

It receives a function from the central entity, which is executed when the user

presses the update button.

Type Widget (2): The dependency of the type widget is the input widget.

When updating, it receives the input string, and parses it into a connector, and

performs a type check. When success, it displays the resulting type in its visual

output.

Concrete Instance Widget (3): The concrete instance depends on the

type widget. Its update function gets the connector generated by the type

widget and instantiates it, presenting a connector with the core operators pre-

sented in Fig. 3.1 – called a core connector – and respective type. This core

connector is the data type associated to this widget. This widget and the type

widget are only present in the local version, while the type concrete instance

replaces them in the server version.

Type Concrete Instance Widget (2, 3): This widget is a mixture be-

tween the previous two widgets. It is only loaded in the server version. On

load it presents the boxes of the type widget and the concrete instance widget.

Instead of parsing the input, it sends the input string to the server, waiting

for the type and core connector data from it. This communication turns the

server version more powerful than the local version, as the local version has

limitations instantiating the connector (e.g. \n. \ m.(fifo^(n-m)) generates

an error) which are not encountered in the server version.
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Examples Widget (4): The examples widget has no dependencies, but

it must have access to the input widget. When the user selects an example, it

copies the example to the input box, and forces an update of the widgets.

Circuit Widget (5): The circuit widget receives the core connector from

the concrete instance, and generates a graphical representation of it. The graph-

ical representation is displayed using the d3 library for JavaScript.

Automaton Widget (6): The automaton widget receives the core con-

nector and calculates the respective port automaton. The PA is displayed using

the d3 library. The calculations are performed using the encoding presented in

Section 3.3.

The resulting automaton tends to grow exponentially, which affects the per-

formance of the site. To reduce the impact of this problem, two measures were

taken. The minimization technique to avoid updating has been explained. If the

box is not minimized, after a certain number of steps are performed during the

computation, a time-out error is reached, the update of the widget is cancelled,

and an error message is displayed.

mCRL2 Widget (7): This widget displays the mCRL2 model, using the

core connector from the concrete instance widget. This model is calculated fol-

lowing the encoding of Section 3.4, with some changes. The names of the actions

are given by the name of the primitive, associated with the process identification

number, and an information about its type (source, sink, or mixed). The type

can only be mixed if the primitive belongs to a sub-connector. Furthermore, we

do not hide the synchronised actions, as opposed to the encoding of the previ-

ous chapter. This only happens if the connector is defined in a subconnector

instance. On the client-server mode, the widget supports the download of the

LTS, and LPS of the model, by executing mCRL2 commands to compile the

model, on the server side.

Note that we do not consider the error box displayed as a widget, as it

is a stateless component, and its internal structure serves only to display the

error messages provided by the other widgets. In Fig. 4.5 we present the widgets

mentioned in this section, using the labels from Fig. 4.2, excluding the examples

widget. Note that in case of the server version, labels (2), and (3) should be

combined.
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1 2 3

5 6 7

Figure 4.5: Dependency relation of the widgets

This structure provides a modular construction of the framework, making it

easier to add new features to the framework. When a new feature is developed in

the back-end of the framework, adding it to the framework should only consist

of developing a new widget with the respective operations, and dependencies,

and instantiating it in the central manager in order for it to be loaded. There

is no need for understanding the internal structure of the remaining widgets to

add a new one.

4.5 Example: analysing an exclusive router

We present an example of an exclusive router, described in the preo language.

We explain the computational steps of the framework upon parsing the con-

nector, and provide the output of each widget, with the exception of the mCRL2

model, as they tend to become large. We encourage the reader to test this

example in the pre-compiled online version, where the model is presented.

The following code generates an exclusive router connector in the calculus

of Reo connectors:

dupl ; dupl∗ id ;

( lossy ; dupl )∗ ( lossy ; dupl )∗ id ;

id∗merger∗ id∗ id ; id∗ id∗sym(1 , 1) ; id∗drain∗ id

After saving the string value of the input widget, the framework parses the

input, generating the respective connector object, and outputting the type of

the connector in the type box, whose value is 1 7→ 2. In this case, there are

no parameters to instantiate, and the connector only uses core operators of the

calculus. Therefore the concrete instance widget displays the connector and the

type already mentioned. Then the circuit, automaton, and mCRL2 widgets are
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Figure 4.6: Exclusive router graphical output

updated following this order. We can find the output of the circuit and the

automaton in Fig. 4.6 and 4.7, respectively. Notice that the port automaton

of the connector has two transitions equally labelled. A more precise automa-

ton would differentiate the various primitives. As mentioned before, we do not

present the mCRL2 model generated. Instead, we present the generated LTS,

presented in Fig. 4.8. For a better presentation we hide the internal ports of

the connector in the model, by defining it as a subconnector named exrouter.

The generated LTS presents a more complete graphical presentation of the con-

nectors behaviour, as opposed to the automaton generated on the framework.

Furthermore, consider the µ-calculus formula

[true*][exrouter1in1| exrouter17out2 |exrouter16out1] false

that specifies that after any transition, information cannot flow out of the con-

nector from both output ports. Executing an analysis using the mCRL2 toolset

would show this formula to be true.

4.6 Towards Verification of Connector Families

The Preo language, as well as the full version of the connector calculus from

Proença and Clarke [8], describe families of connectors. In this document we

did not approach the families aspect, although some mentions and examples

are presented throughout it, particularly in this chapter, while describing the

existing tools to type-check Preo connectors.
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Figure 4.7: Exclusive router PA

Figure 4.8: LTS of the exrouter

We experimented on how to verify the full calculus of connector families

using the mCRL2 toolset, following the ideas from Beek and de Vink [3]. Un-

fortunately, mCRL2 requires the number of processes running in parallel to be

fixed and known upfront, limiting the analysis to only a bounded set of fami-

lies. The latest experiments consist of generating a small number of instances

of a connector and include them in a single mCRL2 model, which can be used

for model checking. However, we did not find a satisfactory approach to either

select an interesting set of candidates for instances, or to give some control over

the instances being selected. Furthermore, modelling families of connectors can

easily produce a state explosion that is hard to control. Hence we left these

experiments out of the existing framework, although they can be found in ex-

perimental branches on our GitHub project.7 Future work will involve providing

some control over the instances that could be of interest when analysing families

of connectors, and investigating a suitable (modal) logic to describe properties

over families of connectors.

7https://github.com/ReoLanguage/Preo/tree/family modelation nayve
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Chapter 5

Conclusion

This thesis formalises the behaviour of a calculus of Reo connectors using port

automata. We used this semantic model to generate an encoding of connectors

in mCRL2, and this enables the use of the mCRL2 toolset to analyse properties

and verify the behaviour of a given connector. For both formalisations we

proved the respective correctness, with respect to bisimilarity. We implemented

these encodings into a web framework – ReoLive – which, given a connector

as input, provides several reports on the properties of the respective connector.

This framework supports a family of connectors as input, although most reports

presented refer only to one member of the respective family (generated by the

framework).

Our work fell short on providing an encoding for families of connectors, as

explained in Section 4.6. Our initial ambition was to verify the full spectrum of

families of connectors. Unfortunately, this was not possible using the mCRL2

toolset, due to restrictions on the parallel operator, which does not support the

specification of an arbitrary number of processes.

We plan to investigate the usage of different tools, such as Alloy,1 to model

and analyse the families. We also plan on extending the portfolio of available

modules; for example, add support for a dedicated modal logic to verify con-

nectors, analyse different semantics of Reo connectors other than Port Automata

(incorporation of the IFTA tools is planned soon),2 and add support for the Treo

1http://alloytools.org
2https://github.com/haslab/ifta
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language to specify connectors.3 Furthermore, we want to take advantage on the

client-server version of the ReoLive framework, by introducing an input widget

to analyse the connectors on the server, with a µ-calculus property described in

this widget.

3https://github.com/ReoLanguage/Reo
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