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Abstract
VirtuosoNextTM is a distributed real-time operating system (RTOS) fea-

turing a generic programming model dubbed Interacting Entities. This pa-
per focuses on these interactions, implemented as so-called Hubs. Hubs act
as synchronisation and communication mechanisms between the application
tasks and implement the services provided by the kernel. While the kernel
provides the most basic services, each carefully designed, tested and opti-
mised, tasks are limited to this handful of basic hubs, leaving the development
of more complex mechanisms up to application specific implementations.

This work presents a toolset that supports the building of new services
compositionally, using notions borrowed from the Reo coordination language,
on which the developer can delegate coordination-related duties. This toolset
uses a formal compositional semantics for hubs that captures dataflow and
time, formalising the behaviour of existing hubs, and allowing the defini-
tion of new ones. Furthermore, it enables the analysis and verification of
hubs under our automata interpretation, including time-sensitive behaviour
via the Uppaal model checker, usable on http://arcatools.org/hubs. We
illustrate the proposed tools and methods by verifying key properties on
different interaction scenarios between tasks and a composed hub.
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1. Introduction

When developing software for resource-constrained embedded systems,
optimising the utilization of the available resources is a priority. In such sys-
tems, many system-level details can influence time and performance in the
execution, such as interactions with the cache, mismatches between CPU
clock speed, the speed of the external memory, and connected peripherals,
leading to unpredictable execution times. VirtuosoNext [1] is a Real Time
operating system developed by the company Altreonic that runs efficiently
on a range of small embedded devices, and is accompanied by a set of vi-
sual development tools – Visual Designer – that generates the application
framework and provides tools to analyse the timing behaviour in detail.

The developer is able to organise a program into a set of individual tasks,
scheduled and coordinated by the VirtuosoNext kernel. The coordination
of tasks is a non-trivial process. A kernel process uses a priority-based pre-
emptive scheduler deciding which task to run at each time, with hub services
used to synchronise and pass data between tasks. A fixed set of hubs is made
available by the Visual Designer, which are used to coordinate the tasks. For
example, a FIFO hub allows one or more values to be buffered and consumed
exactly once, a Semaphore hub uses a counter to synchronise tasks based
on counting events, and a Port hub synchronises two tasks, allowing data
to be copied between the tasks without being buffered. However, the set of
available hubs is limited. Creating new hubs to be included in the main-
line distribution is difficult since each hub must be carefully designed, model
checked, implemented and tested. It is still possible for users to create spe-
cific hubs in their installations, however they would need to fully implement
them, losing the assurances of existing hubs.

Towards addressing these limitations, this paper proposes a framework
to guide users of VirtuosoNext to analyse different hubs and scenarios, and
Altreonic’s developers to help designing hubs that can be included in future
versions of VirtuosoNext. This framework supports the specification, com-
position and analysis of hubs and timed contracts of tasks based on Timed
Automata. For example, we can write {task<t1>(W s!) semaphore(s,t)
task<t2>(2 t?) every 3}, using the notation for our framework, to describe
a semaphore hub connecting 2 tasks via the ports s and t. Here s waits
indefinitely, marked with W, and t waits for at most 2 time units before
timing out, trying every 3 time units. We can specify and verify temporal
properties of this scenario within our framework, such as “every time s fires,
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t will eventually fire in less than 3 time units”. The verification uses Up-
paal, resorting to an intermediate DSL for the logic that hides locations and
auxiliary variables and clocks.

This paper and the proposed framework address hubs that (i) go beyond
what is currently supported by VirtuosoNext, by describing new hubs (with
extra synchronisation and time restrictions, not part of VirtuosoNext), and
(ii) allowing hubs to be connected to other hubs directly. The composition of
hubs introduces the possibility of specifying complex interaction protocols,
inspired by Reo’s syntax [2] and real-time semantics [3, 4, 5]. Currently,
without these complex protocols, the orchestration code must be intertwined
with the tasks’ behaviour.

In concrete, this paper provides the following contributions. Parts in bold
denote new results regarding the associated conference publication [6]. An
extended version of this document is published as a technical report [7].

• Specification of hubs interpreted as timed (hub) automata,
– capturing hubs currently present in VirtuosoNext (without real time),
– including hubs not present in VirtuosoNext (some with real time).

• Online tools (http://arcatools.org/hubs) to analyse hubs,
– using a DSL to specify hubs built by composing simpler hubs,
– using a DSL to specify timed contracts of tasks’ interactions,
– interpreting composed hubs as the composition of their timed au-

tomata (c.f. [7]),
– generating graphs and composed automata with dynamic layouts,
– introducing a temporal logic focused on interactions,
– generating UPPAAL specifications and logic formulas,
– running UPPAAL to verify properties, and
– including other analysis of hubs.

The rest of this paper is organized as follows. Section 2 provides some con-
text on how hubs coordinate tasks in VirtuosoNext, and how we can formally
model existing and new hubs. Section 3 presents the software architecture
and functionality. Section 4 introduces the verification tools, including timed
contracts of tasks, the dynamic temporal logic, and the usage of Uppaal to
verify properties. Section 5 exemplifies how to verify the behaviour of a com-
plex hub under different scenarios. Finally, Sections 6 and 7 discuss some
related work and conclude with highlights and future directions, respectively.
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2. Distributed tasks in VirtuosoNext

A VirtuosoNext system is executed on a target system, composed of pro-
cessing nodes and communication links. Orthogonally, an application consists
of a number of tasks coordinated by hubs. Unlike links, hubs are indepen-
dent of the hardware topology. When building application images, the code
generators of VirtuosoNext map tasks and hubs onto specific nodes, taking
into account the target platforms. A special kernel task, running on each
node, controls the scheduling of tasks, the hub services, and the internode
communication and routing.

Our tools propose the analysis of the behaviour of these hubs, supporting
a small specification language for tasks and hubs, and proposing a com-
position model for hubs with timed behaviour, not currently supported by
VirtuosoNext. This section starts by giving a small overview of how tasks are
built and composed in VirtuosoNext, followed by a more detailed description
over existing hubs, and by an approach to specify more complex time-aware
hubs than the ones supported by VirtuosoNext.

2.1. Example of an architecture
A program in VirtuosoNext is a fixed set of tasks, each running on a

given computational node, and interacting with each other via dedicated
interaction entities, called hubs. Consider the example architecture in Fig. 1,
where tasks Task1 and Task2 send instructions to an Actuator task in a round
robin sequence. SemaphoreA tracks the end of Task1 and the beginning of
Task2, while SemaphoreB does the reverse, and port Actuate forwards the
instructions from each task to the Actuator. In this case two Semaphore
hubs were used, depicted by the diamond shape with a ’+’, and a Port hub,
depicted by a box with a ’P’. Tasks and hubs can be deployed on different
processing nodes, but this paper will consider only programs deployed in the
same node, and hence omit references to nodes. This and similar examples
can be found in the VirtuosoNext’s manual [8].

2.2. Task coordination via Hubs
Hubs are coordination mechanisms between tasks that coordinate via put

and get service requests to transfer information from one task to another.
This can be a data element, the notification of an event occurrence, or some
logical entity that needs to be protected for atomic access. A call to a hub
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1 while(true){
2 test(SemaB,
3 wait)
4 put(Actuate,
5 noWait)
6 signal(SemaA,
7 timeout=10)
8 }

1 while(true){
2 get(Actuate,
3 wait)
4 }

1 while(true){
2 signal(SemaB,
3 timeout=10)
4 test(SemaA,
5 wait)
6 put(Actuate,
7 noWait)
8 }

Figure 1: Example application in VirtuosoNext, whereby two tasks communicate with an
actuator in a round robin sequence through two semaphores and a port.

constitutes a descheduling point in the tasks’ execution. The behaviour de-
pends on which hub is selected, e.g. tasks can simply synchronise (with no
data being transferred) or synchronise while transferring data (either buffered
or non-buffered). Other hubs include hubs to request atomic access to a re-
source or hubs that act as gateways to peripheral hardware.

Any number of tasks can make put or get requests to a hub. Such requests
are queued in waiting lists (at each corresponding hub) until they are served.
Waiting lists are ordered by task priority – requests get served by following
such an order. Requests can use different interaction semantics, which deter-
mine how a task waits on a request to succeed. There are three synchronous
and one asynchronous interaction semantics in VirtuosoNext. Here we focus
on the first three. These can be: waiting (W) – a task waits indefinitely until
the request is served; non-waiting (NW) – either the request is served without
delay or it fails; waiting with time-out (WT) – waits either until the request
is served or the specified time-out has expired. In our example in Figure 1,
observe that both tasks send signal messages with a timeout of 10ms, wait
indefinitely for test messages, and send messages to the actuator without
waiting to synchronise.

In our tools we can write task<t1>(W testB?, NW putAct!, 10 signalA!)
to denote a possible contract over the external behaviour of Task1 in Fig. 1.
This contract specifies that the task waits indefinitely to read (?) a value in
its port testB, after which it tries to write (!) a value to its port putAct either
succeeding without delay or failing. Finally, it tries to write a value to port
signalA waiting at most 10 units of time to succeed or fail before it tries to
read a value in testB again. We further discuss tasks in Section 4.1.

There are various hubs available, each with its predefined semantics [8].
Table 1 describes some of them and their put and get service request methods.
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Table 1: Examples of existing Hubs in VirtuosoNext

Hub Waiting Lists for Service Requests
P

Port
put – signals some data entering the port; and get – signals
some data leaving the port. Both must synchronize to succeed.

Event
raise – sets an event, succeeding if not set yet; and test –
checks if an event happened, in which case succeeds, and clears
the event.

Semaphore

signal – signals the semaphore, incrementing an internal
counter c. Succeeds if c < MAX; and test – checks if c > 0,
in which case succeeds, and decrements c.

FIFO

enqueue – buffers some data in the queue. Succeeds if the
queue is not full; and dequeue – gets data from the queue.
Succeeds if the queue is not empty.

2.3. Beyond VirtuosoNext: Custom Complex Hubs
We propose an extended selection of hubs, not currently included in

VirtuosoNext, to capture extra synchrony and time constraints. These in-
clude the ones in Table 2. The Drain hub ignores data values, forcing all
participants to synchronise before proceeding; the Duplicator broadcast an
input to all its outputs atomically, i.e., all outgoing ports must receive the
input before the original sender can resume its execution; and the Timer
(called P-Timer in the companion report [7]), parametrised by t ∈ N , buffers
a received value for t time units, and then sends it to its outgoing port.

More complex hubs can be built by plugging existing hubs together, also
not currently supported by VirtuosoNext. For example, the composition

T D denotes a new hub that waits for a given time after receiving
a value from its left port, and then synchronously sends it to both of the
right ports. Fig. 2 describes a more complex architecture of a sequencer
protocol than the one in Fig. 1, which we will use as a running example. Un-
like in the sequencer in Fig. 1, the sequencing behaviour is captured by the
hub (exogenous coordination), and it is not not scattered among the compo-
nents (endogenous coordination), making it easier to analyse and adapt or
maintain. I.e., tasks in the original architecture are responsible to use the
semaphores and the actuator in the right order to have an alternating be-
haviour; in the new hub they alternate between starting, starti , and placing
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Table 2: Examples of new Hubs not currently in VirtuosoNext

Hub Waiting Lists for Service Requests

Drain∗
put1, put2 – signals some data entering the ports. Both put1

and put2 must synchronize to succeed.

D

Duplicator

put1, . . . , putn – signals some data entering the port; and
get1, . . . , getm – signals some data leaving the port. Exactly
one put and all get must synchronize to succeed.

T

Timer

set – buffers some data and starts a timer, succeeding if the
buffer is empty; and test – gets data from the buffer after the
timer finishes.

1 while(true){
2 put(put1,
3 wait)
4 put(start1,
5 wait)
8 }

T
Task1

D D D D T
Task2

Event1

Event2

P
Actuate

T
Actuator

put1 put2

get

start1 start2

1 while(true){
2 get(get,
3 wait)
4 }

1 while(true){
2 put(start2,
3 wait)
4 put(put2,
5 wait)
8 }

Figure 2: Alternative architecture for the sequencer protocol in Fig. 1.

a value, puti , unaware of the coordination protocol.

2.4. Formal semantics in a nutshell
The formal semantics of hubs and their composition is given by Timed

Hub Automata (THA), which are timed automata [9] based on the timed
automata semantics of Reo connectors [10, 4, 5]. This formalisation is not
covered in this paper, which focuses on the tools that analyse this behaviour,
but can be found in the associated conference publication [6] (without time)
and in the companion technical report [7] (with time). Here, we provide an
informal description of these automata through examples.

As in timed automata, there is a notion of clock variables that capture
the dense time that passes since they were last reset. Initially, all clocks are
set to zero, and are incremented simultaneously. THA additionally supports
multi-action transitions, meaning all actions execute simultaneously.
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L1 L2

put1∣get∣start2
ĝet← p̂ut1

put2∣get∣start1
ĝet← p̂ut2

idle set c≤T

set
bf ← ŝet c← 0

⟨c=T⟩ get1∣get2

ĝet1 ← bf ; ĝet2 ← bf

Figure 3: The composed THA for the running example in Fig. 2 (left), and the composed
Timer and Duplicator example from section Section 2.3 (right).

Example: Custom Alternator. Fig. 3 (left) shows the THA that cap-
tures the behaviour specified by the architecture in Fig. 2. Initially the
automaton is in location L1 , and it can move to a new location L2 by
atomically performing actions from the three involved tasks (top transition),
namely, put1 , get, and start2 . While doing so, a special variable associated
to port get, is assigned with the value sent through port put1 in ĝet← p̂ut1.
The remaining transition behaves similarly.
Example: Timer & Duplicator. Fig. 3 (right) shows the THA that cap-
tures the behaviour of the composed Timer and Duplicator from Section 2.3,
when they are synchronised over the actions test and put. Initially, the au-
tomata is in location idle. Whenever the timer is set, the buffer is updated
with the value sent through port set, namely ŝet. In addition, this tran-
sition resets a clock c ← 0 before moving to a new location. This location
has an invariant, c ≤ T , i.e., a clock constraint that determines how much
time the automaton can spend on such location, in this case, no more that T
units of time for some specified T ∈ N . The automaton waits exactly T time
units—indicated by the clock constraint c = T on the outgoing transition—
after which it must be tested simultaneously by two tasks through ports get1
and get2 . Both tasks will receive the stored data in the Timer Hub and the
THA returns to the idle location.

3. Software Framework

3.1. Software Architecture
The software architecture is illustrated in Fig. 4. The tool is integrated

into the ReoLive framework. This framework aggregates various tools, in-
cluding the Hubs module, each being an independent open project on GitHub.
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It provides support for generating an interactive website to use the tools, ei-
ther in a standalone lightweight JavaScript version, or in a Client-Server ver-
sion that enables the support of off-the-shelf applications from the browser.
The off-the-shelf tools include the Uppaal real-time model checker used by
the Hubs module to verify temporal properties of the hubs.

The Preo module provides the support to parse and interpret the specified
hubs as Reo connectors [11]. These connectors can later be translated into a
THA for further analysis by the Hubs module. The Hubs module provides the
remaining functionality to compose, analyse, and verify hubs with Uppaal,
which is described in the following section.

The modules and the framework are developed in Scala, an object-oriented
programming language with functional features [12]. The Client-Server ver-
sion is compiled into JavaScript using Scala.js1 to run on the client side, and
JVM binaries to run on the server side. The server is based on the Play
Framework2 for Scala. The lightweight and the client side version use the
D3.js3 library to build interactive graphics in JavaScript. Note that cur-
rently the server is only used to model-check properties using Uppaal, and
everything else is computed by the browser using the generated JavaScript
libraries.

3.2. Software Functionalities
We implemented a tool that composes, simplifies, analyses, and verifies

THA, available to use online or download on http://arcatools.org/hubs.
We organise the functionality by widgets, as depicted in Fig. 5. Our current
implementation allows specifications of composed hubs and tasks using a
textual representation based on Preo [13, 14] and Treo [15], by means of the
following widgets: 1 the editor to specify the hub; 2 the architectural view
of the hub; 3 the simplified automaton of the hub; 4 the timed automaton
to be imported by Uppaal model checker; 5 a summary of some structural
properties of the automaton, such as required memory, size estimation of the
code, information about which hubs’ ports are always ready to synchronise;
6 an interactive panel to produce the minimum number of context switches
for a given trace; and 7 an interactive panel to verify a list of given timed

1https://www.scala-js.org
2https://www.playframework.com/
3https://d3js.org/
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Figure 4: Software Architecture.

behavioural properties, relying on Uppaal running on our servers, and their
result 8 together with the associated Uppaal models and formulas.

4. Verification tools

This section describes how tasks are abstracted and specified in our formal
framework (Section 4.1), presents a temporal logics fine-tuned to THA to
specify timed properties (Section 4.2), and describes an encoding of formulas
and hubs into Uppaal’s temporal logic and timed automata, respectively
(Section 4.3).

4.1. Tasks
Tasks in our implementation denote contracts capturing the order and

time bounds of the expected interactions of task components. These are
modelled as THA, extended with a notion of priority supported by Uppaal,
and are used to describe scenarios of our hubs. When verifying if the ar-
chitecture in Fig. 1 deadlocks, tasks can be used to specify a scenario, e.g.,
where Task1 and Task2 execute periodically every 10ms, and the Actuator
executes periodically every 2ms.
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Figure 5: Screenshot of the widgets in the online analyser for VirtuosoNext’s hubs.

Contracts for tasks can be specified by the following grammar.

tk ∶= task<name>(port∗) [every n] mode ∶= W ∣ NW ∣ n
port ∶= mode name io io ∶= ! ∣ ?

This syntax has been briefly mentioned in Section 2.2. For example, task<T1>
(W a?, 4 b!) specifies a task that tries to read a value on its port a, waiting
indefinitely (W), followed by a call to write a value to port b with a timeout of
4 time units, after which it loops again following the same behaviour forever.
This example, when extended with every 5, will periodically run every 5 time
units. In our interpretation of a periodic run, every round of the execution
of this task takes exactly 5 time units, and repeats forever. In each round a
fires once and b either fires or times-out; hence a can wait at most 10 time
units between 2 fires (when it fires at the beginning and end of consecutive
rounds). If after 5 time units after the start of a round a fires and b cannot
fire, then b will timeout and not fire for that round. As another example,
task<T2>(NW c!) every 5 will periodically try to send a value to port c every
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tob≤4

a
tob ← 0

b

⟨tob=4 ⟩

tev≤5

tob≤4
tev≤5

tev≤5

a
tob ← 0 b

⟨tob=4 ⟩

⟨tev=5 ⟩
tev ← 0

tev≤5
toc≤0

tev≤5

c

⟨toc=0 ⟩

⟨tev=5 ⟩
tev ← 0
toc ← 0

task<T1>(W a?, 4 b!) task<T1>(W a?, 4 b!)
every 5

task<T2>(NW c!)
every 5

Figure 6: Timed hub automata of specific tasks.

5 time units, without waiting when it fails to fire. After 5 time units from
the beginning of a round, if c did not fire then it will either fire or timeout,
giving priority to firing.

The three examples above produce the timed automata in Fig. 6, ex-
plained in more detail in the companion report [7]. These automata use
clock variables tev to capture the time since the beginning of a round, and
tox, for each port x, to capture the time since x is ready to fire. Further-
more they use dashed arrows to denote lower priority transitions, based on
Uppaal’s notion of channel priority, not covered in our THA semantics.

4.2. Temporal logic for THA
This section proposes a subset of Timed Computation Tree Logic (TCTL)

for timed hub automata. This logic can be seen as a subset of Uppaal
TCTL, agnostic of locations, extended with new operators to describe the
behaviour of the systems in terms of actions, i.e., on ports that fire, rather
than locations. We propose a concrete syntax that closely follows that used
by Uppaal’s model checker, and define its semantics by formalising its sat-
isfaction relation. Section 4.3 provides more details on the mapping from
the proposed TCTL subset into Uppaal’s TCTL, and describes how it is
implemented by our online prototype.

TCTL properties are described using path formulas and state formulas.
A path formula is evaluated over paths of the underlying transition system,
while a state formula is evaluated over a single state of such system. The
syntax and semantics of TCTL properties are formalised below.

Definition 1 (TCTL for THA). A valid property over a THA consists of
a path formula π given by the following grammar

π ∶∶= A ψ ∣ E ψ ∣ ψ --> ψ ∣ every a --> b [after n] (path-formula)
ψ ∶∶= ρ ∣ cc ∣ pred(x) ∣ true ∣ not ψ ∣ ψ and ψ ∣ deadlock (state-formula)
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where a, b ∈ P are ports, n ∈ N, ∈ {◻,◇}, pred(x) is a predicate over
variables x used by the THA, ρ is an a-formula defined below, and cc is a clock
constraint defined below using ⊡ ∈ {<,≤,==,>,≥} and c to range over clocks.

cc ∶∶= c ⊡ n ∣ c − c ⊡ n (clock constraint)

ρ ∶∶= a.done ∣ a.doing ∣ a refiresAfter n ∣ a refiresAfterOrAt n
(a-formula)

Informally, state properties describe what must hold for a given state
(which includes the time value assigned to clocks), and path properties de-
scribe what must hold while evolving the automaton. For example, a.done
holds if a has fired at least once, a.doing holds if a was the last port to be
fired, and a refiresAfterOrAt 5 holds in states where, if a fired before, then
it cannot refire unless 5 units of time have passed. Regarding path proper-
ties, A ψ holds if ψ holds for all possible paths, while its E counterpart
holds if ψ holds for some path. Along an execution path p, ◻ ψ holds if
ψ holds for all states along p, ◇ ψ holds if a state along p satisfies ψ, and
ψ1 --> ψ2 is a shorthand for A◻ (ψ1 imply (A ◇ ψ2)).4 The latter holds if,
for all paths with a state that satisfies ψ1, ψ2 must be satisfied by one of
the succeeding states; i.e., whenever ψ1 holds, always eventually ψ2 holds.
Finally, every a --> b after 5 holds if, whenever a fires, b will fire after 5 or
more time units without a firing again until b has fired.

The formal definition of satisfaction of a formula π for a given THA H
and state s, written H,s ⊧ π, can be found in the companion report [7]. This
grammar is enriched with a special clock a.t for each port a, denoting the
time since a fired last time (or since the beginning of the execution), and
with syntactic sugar for state formulas, summarised below. We write ⋀ to
indicate the generalised and for multiple state formulas, and P to denote the
set of all ports used by a given THA.

a ≜ a.doing and a.t == 0
ψ1 or ψ2 ≜ not (not ψ1 and not ψ2)
nothing ≜ ⋀a∈P not a.doing

ψ1 imply ψ2 ≜ not ψ1 or ψ2
a refiresBefore n ≜ a.t < n

a refiresBeforeOrAt n ≜ a.t ≤ n
4.3. Under the hood: verification via Uppaal

This subsection describes how we verify THA using Uppaal. More pre-
cisely, it describes informally how a THA is encoded as a timed automaton in

4As in Uppaal, nested path formulas are not supported explicitly. However, some are
introduced through specific constructs like ψ --> ψ.
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idle

ticking

c≤T
setget1 ,get2

xset ← true , xget1 ← false , xget2 ← false c ← 0

tset← 0 , doneset ← true

sinceset,get1 +=1 , sinceget1,set −=1
sinceset,get2 +=1 , sinceget2,set −=1

xset ← false , xget1 ← true , xget2 ← true

⟨c=T⟩

tget1 ← 0 , tget2 ← 0 , doneget1 ← true , doneget2 ← true

sinceget1,set +=1 , sinceget2,set +=1
sinceset,get1 −=1 , sinceset,get2 −=1

Figure 7: Encoded Uppaal’s automaton of the THA from Fig. 3; dashed locations are
committed.

Uppaal, and how TCTL formulas for THA are viewed in Uppaal’s TCTL,
based on examples. The automata encoding introduces new data variables to
reason about which ports have been fired, and new intermediate locations to
distinguish when an action is about to fire from when it actually fires. The
TCTL encoding converts the references to ports into references to locations
or to the new variables, following closely the notion of satisfaction of TCTL
described in the companion report [7].

4.3.1. Encoding Automata by Example
Recall the THA of the Timer & Duplicator hub depicted in Fig. 3. Its

corresponding timed automaton in Uppaal is depicted in Fig. 7, which in-
troduces new locations, clocks, and data variables. These includes, for each
port a, the clock ta (to capture a.t) and variable donea (to capture a.done).
Other added variables and locations are described below.

Locations that represent actions being fired are depicted with dashed lines,
and are associated to sets of ports that triggered them. These are
marked as committed locations in Uppaal, in which time is not allowed
to proceed. Hence, to know if set has just been fired, one can check if
the automaton is in any of these special committed locations associated
to the set port.

Data variables (x and since) Every port a yields a variable xa, set to
true when a was fired in the last set of fired ports. Every pair of
different ports (a, b) yields a variable sincea,b, with 0 ≤ sincea,b ≤ 2
(considering that 2+ 1 = 2 and 0− 1 = 0), roughly denoting the number
of times a fired since b was last fired. More precisely, sinceset,get1 is 0
if set never fired, it is 1 if it was fired once since the last time get1
was fired (or from the beginning), and it is 2 if it was fired more than
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once since the last time get1 was fired. These variables are used when
verifying formulas like every a --> b, where for each a fired, b should
fire without a firing in between.

Optimisation: Observe that there is a large number of new variables and
clocks, and also a large number of extra (committed) locations. In practice
we do not add all variables and extra locations, but only the ones needed
by each individual rule. Hence, verifying 4 properties will generate 4 (poten-
tially different) Uppaal automata, each simplified to include only the needed
artefacts, and including the encoded property to be verified. For simplicity,
we do not present here the simpler automata versions.
Priority: Recall that tasks are modelled as timed automata with a notion
of priority (Section 4.1). This priority is meant only to prevent ports from
discarding data and timing out when the hub is ready to communicate. This
is encoded in Uppaal using its notion of channel priority. Channels in Up-
paal are labels of transitions in automata used to synchronise with channels
of neighbour automata. Our encoding does not rely on channels since it pro-
duces a single automaton, but we introduce a set of dummy channels priop

that can always be fired5, where p ∈ Z denotes the priority of the channel
(higher numbers mean higher priority). Transitions in an automaton are
marked with priority 0 if it synchronizes with other automata, and with pri-
ority −1 if it denotes a timeout. During composition, priorities of transitions
that go together are added up, reducing the priority of transitions with more
timeouts.

4.3.2. Encoding Formulas by Example
The Uppaal6 model checker supports a subset of TCTL formulas for

timed automata [16], which we took into account when proposing the logic
for THA. The key differences with our logic are: the use of locations (ta.`)
in state formulas, the absence of references to actions (or ports) and their
associated clocks, and the absence of the every-path formula. Hence, when
encoding our logic into Uppaal’s TCTL, each of the missing constructs are
mimicked using the extra variables and clocks, and using references to known
locations in the automata encoding.

5This is technically achieved using a broadcast channel in Uppaal.
6http://www.uppaal.org/
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Table 3: Examples of encodings of THA TCTL formulas into Uppaal.

TCTL Encoding to Uppaal

A◇ put2 and get A◇ xput2 and tput2 = 0 and xget and tget = 0

A◻ act.doing or nothing A◻ xact or (notxget and notxput1 and notxput2 )

every put1 --> put2
after 2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xput1 --> xput2

A◻ cmt(put2 ) imply sinceput1 ,put2 ≤ 1

A◻ ( cmt(put2 ) and
sinceput1 ,put2 = 1 ) imply tput1 ≥ 2

A◇ put1 refiresAfterOrAt 2 A◇ (doneput1 and cmt(put1 )) imply tput1 ≥ 2

To refer to the committed locations introduced in Section 4.3.1 we will
use the following shorthand, where a is a port:

cmt(a) = { `1 or . . . or `n if {`1, . . . , `n} are the locations where a appears;
false otherwise.

The encoding of examples of key formulas is presented in Table 3 – the
general encoding of formulas follows the same structure as in these examples,
and is omitted in this paper. This proof relies on the fact that the observable
behaviour is not modified by adding new intermediate committed states to
an automaton that has no committed states, and by adding new variable
assignments that are never read.

5. Example: Verifying the sequencer protocol

Recall our running example illustrated in Fig. 2 of a sequencer proto-
col. We illustrate the proposed specification constructs for tasks and time-
sensitive behavioural properties by verifying different properties under dif-
ferent scenarios, i.e., connecting tasks with different models of interaction
to the hub. The goal is to provide some insight on how to use our tools to
understand the different expected behaviours of a hub in different scenarios.

We create 5 different scenarios with 2 producer tasks and an actuator task,
varying on how the producer tasks interact with the hub. More specifically,
using wait, non-wait, and timeout calls to the hubs, at different periodicities.
These scenarios are presented in Table 4 (left column). Notice that the first
scenario corresponds to the protocol in Fig. 2. On same table we list 5
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Table 4: Verification of the sequencer hub under different scenarios.

Scenario ψt1#t2 ψt2 ψs1→s2 ψs1→2 s2 ψ≤9

task<T1>(W put1!, W st1! )
task<T2>(W st2! , W put2!)
task<Ac>(W get?)

3 7 7 7 7

task<T1>(W put1!, W st1! ) every 3
task<T2>(W st2! , W put2!) every 3
task<Ac>(W get?)

3 3 3 7 3

task<T1>(NW put1!, NW st1! ) every 3
task<T2>(NW st2! , NW put2!) every 3
task<Ac>(W get?)

3 3 3 3 3

task<T1>(3 put1!, 3 st1! ) every 6
task<T2>(3 st2! , 3 put2!) every 6
task<Ac>(W get?)

3 3 3 7 3

task<T1>(NW put1!, 3 st1! ) every 2
task<T2>(W st2! , 3 put2!) every 3
task<Ac>(W get?)

3 3 7 7 3

different properties that we find of relevance, and whether these are satisfied
under each scenario (right column). These properties are described below,
together with a discussion regarding their satisfaction on the scenarios.

ψt1#t2 = {A◻ start1 imply ((put1 .t ≥ put2 .t) and (start2 .t ≥ put2 .t))}
Task 1 can start only if Task 2 was the last one to run, and when Task 2
is not running (or just finishing). This is a core functional requirement
of the hub: guaranteeing exclusivity. All scenarios satisfy this property.

ψt2 = {A◇ start2}
Task 2 must start eventually. This liveness property checks if Task 2
must run. Only the first scenario fails to satisfy this property, because
“W st!” is allowed to wait an unbounded amount of time. Hence, there
is no guarantee it will run when it decides to wait forever. The other
scenarios use a “every” construct that bounds the waiting time.

ψs1→s2 = {start1 --> start2}
If start1 fires, start2 must eventually fire. This liveness property de-
scribes continuous progress. The first scenario does not satisfy it be-
cause it can wait forever, and the last one because it deadlocks. The
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deadlock occurs after T1 finishes the 1st round firing both ports, and it
fails to fire put1 in the 2nd round. Both T1 and T2 wait to fire start in
their 2nd round, and time cannot pass at the end of the T1’s round.

ψs1→2 s2 = {every start1 --> start2 after 2}
Everytime start1 fires, start2 must eventually fire before start1 again,
and wait at least 2 time units before firing start2 . This is a variation of
the previous property with a periodicity. All but the 3rd scenario fail
to satisfy this property: the 1st scenario fails because rounds can be
faster than 2; the 2nd and 4th fail because start1 can be executed at
the end of a round, and put2 at the beginning of the following round;
the last scenario fails for the same reason ψs1→s2 does.

ψ≤9 = {A◻ start2 refiresBeforeOrAt 9}
Task 2 starts within 9 time units after finishing a previous round. Only
the first scenario fails, since it can take an infinite amount of time
between two fires of start2 . The 2nd scenario can take up to 6 time
units between fires of start2 , the 4th can take up to 9 time units when
start2 fires at the beginning of a round, and right before timing out in
the follow up round (6+3 time units).

Observe that the firing of ports takes zero time in our model, based on
timed automata. Hence, in any of our scenarios, it is possible to run a
full round in zero time. Furthermore, a possible trace in the first scenario
is an infinite stream of communication without time passing, known in the
literature as a Zeno path, which should be avoided. Our notion of periodicity
provides some control over forcing time to evolve, but other mechanisms could
be added, such as introducing time delays between actions, or requiring each
port to take some amount of time to fire.

6. Related work

The global architecture of VirtuosoNext RTOS, including the interaction
with hubs, has been formally analysed using TLA+ by Verhulst et al. [1],
focusing on untimed properties regarding how hubs are implemented within
VirtuosoNext. Recently, we proposed an approach to formalise hubs through
hub automata [6], focused on the interactions, aiming at the analysis of hubs
built compositionally. Here, we use hub automata extended with time [7],
proposing a dynamic logic to express temporal properties focusing on ports.
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Timed Hub Automata is inspired by existing automata-based models for
Reo [2, 17, 3, 5], involving data, variables, and time. The semantics based on
timed automata provide encodings of Reo connectors using the same notion
of time used by Uppaal, as we do, and further exploit the notion of automata
composition embedded in Uppaal. Unlike these approaches, we introduce
a notion of sequential and parallel updates, and facilitate the verification
process for the end user, by providing support for a fine-tuned language for
specifying logical properties agnostic of locations and for describing timed
scenarios. We avoid exposing the user to Uppaal, using a similar automata
model that is better suited for multiple actions.

Formal analysis of RTOS are more typically focused on the scheduler,
which is not the focus of this work. The following are examples of relevant
scheduling analysis. Ha et al. [18] used theorem provers to analyse schedulers
for avionics software. Carnevali et al. [19] used preemptive Time Petri Nets
to support exact scheduling analysis and guide the development of tasks with
non-deterministic execution times in an RTOS with hierarchical scheduling.
Dietrich et al. [20] analysed and model checked all possible execution paths of
a real-time system to tailor the kernel to particular application scenarios, re-
sulting in optimisations in execution speed and robustness. Dokter et al. [21]
proposed a framework to synthesise optimised schedulers that consider delays
introduced by interaction between tasks, interpreting scheduling as a game
that requires minimising the time between subsequent context switches.

7. Conclusions

This article presents a toolset to construct and analyse hubs in Virtuoso-
Next, which are services used to orchestrate interacting tasks in a Real Time
OS that runs on embedded devices. When using VirtuosoNext, programmers
can orchestrate individual tasks by using a set of core hubs, provided as
services by the OS. More complex interaction mechanisms must be encoded
within the tasks, which is hard to debug and maintain.

Our proposed formal framework provides mechanisms to design and im-
plement complex hubs that can be formally analysed and verified to provide
the same level of assurance that predefined hubs provide. Currently, the
framework allows to (1) construct complex hubs out of simpler ones, (2)
verify timed properties using a variation of TCTL used by Uppaal tailored
to reason about interactions with hubs, and (3) analyse some aspects of
the hubs such as: memory used, estimated lines of codes, always available
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ports, and minimum number of context switches required to perform certain
behaviour. This is publicly available both to run online using our web inter-
face, and to download and execute locally (http://arcatools.org/hubs).

The tools benefits both users of VirtuosoNext and Altreonic’s developers.
The former can experiment how existing hubs behave in different timed sce-
narios; while the latter can use it to help designing new custom-made hubs,
and potentially incorporate them into a future version of VirtuosoNext.

Ongoing work to extend our formal framework includes:

• variability support to analyse and improve the development of fam-
ilies of systems in VirtuosoNext, since VirtuosoNext provides a simple
and error-prone mechanism to allow topologies to be applied to the
same set of tasks;

• code refactoring and generation applied to existing (on-production)
VirtuosoNext programs, probably adding new primitive hubs, by ex-
tracting the coordination logic from tasks into new complex hubs; and

• analysis extension to support a wider range of analysis to Hub Au-
tomata, such as the model checking of liveness and safety properties
using other tools, e.g. mCRL2 (c.f. [13, 22]).
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